Society
How India Is Redrawing the Global Innovation Map
As global innovation becomes increasingly multipolar, India is emerging as one of its most dynamic centres—powered by mission-driven policies, rising R&D investment and a broad democratic base that fuels open scientific collaboration
The geography of global innovation is undergoing a quiet but profound shift. While China’s scale and the West’s legacy institutions continue to command attention, India is shaping a new model of technology leadership—democratic, mission-oriented, and deeply integrated with national development goals. This shift is not accidental; it is the result of sustained investment, regulatory reform and a deliberate push to build scientific capability for a multipolar world.
Over the past decade, India’s research ecosystem has expanded rapidly. The country’s Gross Expenditure on R&D has more than doubled, reaching ₹1.27 lakh crore, with steady growth in per-capita spending and research output. India now ranks third globally in S&E doctorates, reflecting a strong knowledge pipeline, while annual patent filings have nearly tripled in four years—a sign of growing domestic innovation capacity.

A defining feature of India’s rise is its comprehensive mission-led architecture. The National Quantum Mission, National Supercomputing Mission, and the India Semiconductor Mission are building deep capabilities across high-value technological domains. These efforts have been matched by policy reforms, from the National Geospatial Policy and Indian Space Policy to the BioE3 biotechnology framework, which support open access, private participation and high-impact research.
This momentum is reinforced by the landmark ₹1 lakh crore Research, Development and Innovation (RDI) Scheme, designed to catalyse private-sector R&D through long-term, low-cost financing—an unprecedented step for an emerging economy. Together with the Anusandhan National Research Foundation, which aims to mobilise ₹50,000 crore in five years, India is constructing one of the world’s most ambitious innovation funding ecosystems.

Crucially, India’s model is anchored in its democratic credentials, where open institutions, transparent policymaking and collaborative research ecosystems allow universities, startups and industry to co-create solutions. In contrast to more centralised systems, India’s innovation growth is being shaped by diversity of ideas, decentralised experimentation and global partnerships.
As global technology competition intensifies, India is no longer just participating—it is actively reshaping the contours of innovation. In this emerging landscape, India’s blend of scale, openness and strategic coordination is helping redraw the world’s innovation map.
Earth
EP Investigation: Hidden Epidemic, Tuberculosis Spreads Among Kerala’s Captive Elephants
An EP Investigation into tuberculosis in Kerala’s captive elephants reveals human transmission risks, weak screening systems, and urgent policy gaps.
Tuberculosis in Kerala’s captive elephants has become a silent but persistent threat, driven largely by human-to-animal transmission, chronic stress, and systemic failures in veterinary public health. An EdPublica (EP) Investigation reveals how the absence of routine screening, weak governance, and prolonged neglect could turn a preventable disease into a far larger crisis in the years ahead.
By Lakshmi Narayanan | EP Investigation
Tuberculosis is quietly spreading among Kerala’s captive elephants, sustained not by wildlife exposure but by human contact, chronic stress, and systemic neglect. Long treated as a marginal veterinary issue, the disease represents a serious and largely ignored public health and animal welfare crisis—one that experts warn could intensify in the coming years if left unaddressed.
Kerala hosts one of the largest populations of captive Asian elephants in India, housed by temples, private owners, and festival organisers. According to a Forest Department survey concluded in February 2025, the state currently has 389 captive elephants, marking a steady decline from 521 in 2018 and over 700 in 2010, with the majority now owned by private individuals. This sharp reduction over the past decade reflects broader stresses within the captive elephant system, including ageing animals, declining ownership viability, and chronic health concerns.
Within this shrinking population, tuberculosis is neither new nor rare; it is endemic. Historical veterinary records and animal welfare documentation indicate that in earlier years, TB may have contributed to as many as 25 captive elephant deaths annually. Yet in recent times, detailed and transparent reporting on TB-related infections and fatalities has largely disappeared from public view, creating a misleading impression that the risk has diminished when, in reality, surveillance itself has weakened.
This absence of attention does not signal reduced risk. Tuberculosis is a slow, insidious disease that can remain latent or undiagnosed for years. Without mandatory screening or transparent surveillance, infection can circulate undetected within captive elephant populations—allowing animals to suffer prolonged illness and potentially function as silent reservoirs of infection.

The persistence of tuberculosis among captive elephants is not accidental. It is the result of a convergence of vulnerabilities: constant exposure to infected humans, immune suppression driven by captivity-related stress, and systemic failures in veterinary public health governance. Together, these factors have created ideal conditions for a preventable disease to endure—largely unseen, and largely unchallenged.
The Human–Elephant Interface: A Critical Transmission Pathway
The primary route of TB transmission among Kerala’s captive elephants is reverse zoonosis: the spread of infection from humans to animals. The causative agent, Mycobacterium tuberculosis, is a human-adapted pathogen transmitted through respiratory aerosols. In settings where elephants live and work in close proximity to people, this pathway becomes epidemiologically decisive.
Mahouts and handlers represent the most significant source of chronic exposure. Their daily routines—feeding, bathing, training, and transporting elephants—require prolonged, close physical contact. If a handler carries an active or latent TB infection, the opportunity for transmission to the animal is constant and cumulative.
In addition to handlers, the general public constitutes a secondary but important exposure source. Kerala’s festival culture routinely places elephants amid dense crowds, often for extended periods. These gatherings create intermittent but high-volume opportunities for transmission from undiagnosed or untreated individuals within the broader population. Together, these human reservoirs ensure that captive elephants are rarely insulated from the pathogen. Yet exposure alone does not fully explain disease persistence. The risk of infection is significantly magnified by conditions that undermine the elephants’ immune defenses.
“Tuberculosis in captive elephants is a severe and often underestimated disease. What is seen during post-mortem examinations is extensive, chronic organ damage that reflects prolonged suffering rather than sudden illness. These findings are consistent with long-term exposure to Mycobacterium tuberculosis and delayed detection, Dr. Arun Vishvanathan, a veterinary expert based in Kerala’s Palakkad district, tells EdPublica.
“From a medical and public health perspective, this condition is particularly concerning because it is largely driven by human-to-animal transmission. Elephants living in close, continuous contact with people—especially under stressful captive conditions—experience immune suppression, which allows the infection to progress unchecked. This is not an unavoidable disease; it is a preventable one. Without routine screening of both handlers and elephants, early diagnosis, and strict biosecurity measures, such cases will continue to occur, resulting in needless animal suffering and ongoing public health risk,” Dr. Arun Vishvanathan adds.
Stress, Captivity, and Immune Compromise
Captive environments impose profound physiological and psychological stress on elephants, a species evolved for expansive movement, complex social structures, and environmental autonomy. Confinement to restricted spaces, prolonged chaining, limited exercise, and forced participation in noisy, crowded festivals all contribute to chronic stress.
Scientific evidence across species demonstrates that sustained stress suppresses immune function. In elephants, this immunosuppression reduces resistance to opportunistic infections such as TB and increases the likelihood that latent infections will progress to active disease.
Crowding further compounds the problem. Elephants housed in close quarters or transported frequently between venues are exposed not only to more humans but also to environments conducive to airborne disease transmission. In these conditions, respiratory pathogens can spread efficiently, especially when animals are already physiologically compromised.

”Tuberculosis in Kerala’s captive elephants spreads primarily through close, repeated contact with infected humans, and is sustained by conditions that weaken the animals’ natural defenses. Unlike many wildlife diseases, this is not an infection originating in forests—it is largely a human-driven disease cycle. Mahouts and handlers are the most significant transmission source. Daily activities such as feeding, bathing, chaining, and transport require close physical proximity, often for hours at a time. If a handler has active or undiagnosed TB, the elephant is repeatedly exposed to infectious aerosols,” says Manuprasad, an elephant welfare worker from Thrissur.
Festival crowds and tourists create additional exposure. During temple festivals and public events, elephants are surrounded by dense crowds, sometimes for entire days. In these settings, even brief exposure to multiple infected individuals can result in infection.
Systemic Gaps in Veterinary Public Health
Perhaps the most critical vulnerability lies not in biology but in governance. Kerala lacks a standardized, mandatory TB screening programme for captive elephants. As a result, infected animals—many of them asymptomatic—remain undiagnosed for years. This failure in routine surveillance effectively blinds any meaningful public health response and allows elephants to function as silent reservoirs of infection.
Experts warn that tuberculosis in Kerala’s captive elephants could expand if mandatory screening and biosecurity measures are not urgently implemented.
Nutritional inadequacy is another systemic issue. Economic pressures within the temple and festival ecosystem often translate into suboptimal feeding regimes. Poor nutrition weakens immune responses, lowering the infectious dose required for TB to establish and spread.
Compounding these challenges is a widespread lack of awareness among elephant owners and handlers regarding TB transmission and prevention. Clear, enforceable biosecurity protocols—covering quarantine, treatment, and movement restrictions for TB-positive animals—are largely absent or inconsistently applied. Without such measures, even identified cases pose an ongoing risk to other elephants and to humans.

”As an animal rights and welfare activist, I have personally witnessed the post-mortem of an elephant affected by tuberculosis, and it was deeply distressing. The extent of internal damage revealed the severe and prolonged suffering this animal endured—far beyond what most people realize. Seeing such devastation in an animal of immense strength and dignity is heartbreaking,” explains Ambili Purackal, founder of DAYA, a Kerala-based NGO known for its proactive role in the state’s animal rights movement.
What makes this suffering even harder to accept is that it is largely the result of human exposure. Elephants do not face tuberculosis at these levels in the wild; they contract it through forced, prolonged contact with humans under stressful captive conditions that weaken their immunity. This is not just a veterinary concern but a moral one. These elephants are silent victims of preventable disease, and their suffering is a consequence of human neglect and systemic failure,” Ambili Purackal says.
Secondary and Less-Documented Risks
While human-to-elephant transmission remains the dominant concern, other pathways cannot be entirely dismissed. Interactions with domestic livestock or wildlife in shared environments may contribute to transmission chains, though this remains poorly documented in the Indian context. These ancillary risks further underscore the need for comprehensive epidemiological research.
A Convergence of Vulnerabilities
Taken together, the vulnerabilities facing Kerala’s captive elephants form a self-reinforcing cycle. Constant exposure to a human TB reservoir, chronic immune compromise driven by captivity-related stress and poor nutrition, and systemic failures in disease detection and control create ideal conditions for TB persistence.
Breaking this cycle will require a multi-layered public health approach—one that integrates routine screening, improved nutrition, handler health monitoring, and enforceable management protocols. Without such intervention, tuberculosis will remain a silent epidemic, exacting a slow but devastating toll on one of Kerala’s most culturally significant animal populations.
Silence, in this case, is not neutrality—it is risk.
What Needs to Change
Addressing tuberculosis among Kerala’s captive elephants requires coordinated action across animal welfare, public health, and governance. Experts and welfare workers interviewed by EdPublica point to the following urgent priorities:
1. Mandatory TB Screening
· Routine, standardised tuberculosis testing for all captive elephants
· Regular TB screening for mahouts, handlers, and caretakers
· Immediate isolation and treatment protocols for positive cases
2. Handler Health Monitoring
· Integration of mahout health checks into public TB control programmes
· Confidential diagnosis and treatment access to reduce stigma and underreporting
3. Improved Living Conditions
· Reduced chaining and confinement
· Adequate daily exercise and social interaction
· Limits on festival exposure, crowd density, and noise-related stress
4. Nutritional Standards
· Enforced minimum nutrition guidelines
· Regular veterinary audits to ensure immune-supportive diets
5. Biosecurity and Movement Controls
· Quarantine protocols for newly acquired or transferred elephants
· Restrictions on inter-district or inter-state movement of TB-positive animals
6. Transparent Reporting and Oversight
· Publicly accessible data on TB cases and outcomes
· Independent audits of temple and private elephant management practices
7. Interdepartmental Coordination
· Formal collaboration between forest, animal husbandry, and public health departments
· Recognition of TB in captive elephants as a One Health issue—linking human, animal, and environmental health
Some sources in this investigation have requested anonymity due to professional or personal safety concerns. Their identities are known to EdPublica and their statements have been independently verified.
Climate
Could Global Warming Make Greenland, Norway and Sweden Much Colder?
A Nordic Council report warns that global warming could make Norway colder if the Atlantic ocean circulation collapses, triggering severe climate impacts.
Global warming is usually associated with rising temperatures—but a new Nordic report warns it could drive parts of northern Europe into far colder conditions if a major Atlantic ocean current collapses.
Greenland, Norway and Sweden could experience significantly colder climates as the planet warms, according to a new report by the Nordic Council of Ministers that examines the risks linked to a possible collapse of the Atlantic Meridional Overturning Circulation (AMOC).
The report, A Nordic Perspective on AMOC Tipping, brings together the latest scientific evidence on how global warming is slowing the AMOC—one of the world’s largest ocean circulation systems, responsible for transporting heat from the tropics to the North Atlantic. While a full collapse is considered unlikely, the authors warn that it remains possible even at relatively low levels of global warming, with potentially disruptive consequences for northern countries.
The Reversal
If the circulation were to weaken rapidly or cross a tipping point, the report notes, northern Europe could cool sharply even as the rest of the world continues to warm. Such a reversal would have wide-ranging effects on food production, energy systems, infrastructure, and livelihoods across the Nordic region.
“The AMOC is a key part of the climate system for the Nordic region. While the future of the AMOC is uncertain, the potential for a rapid weakening or collapse is a risk we need to take seriously,” said Aleksi Nummelin, Research Professor at the Finnish Meteorological Institute, in a media statement. “This report brings together current scientific knowledge and highlights practical actions for mitigation, monitoring and preparedness.”
A climate paradox
The AMOC plays a central role in maintaining the relatively mild climate of Northern Europe. As global temperatures rise, melting ice from Greenland and increased freshwater input into the North Atlantic are expected to weaken this circulation. According to the report, such changes could reduce heat transport northwards, leading to colder regional conditions—particularly during winter—even under a globally warming climate.
Scientists caution that the impacts would not simply mirror gradual climate change trends. Instead, an AMOC collapse could trigger abrupt and uneven shifts, including expanded sea ice, stronger storms, altered rainfall patterns, and rising sea levels along European coastlines. Some of these impacts would occur regardless of when or how quickly the circulation weakens.
The report also highlights global ripple effects. A slowdown of the AMOC could shift the tropical rain belt southwards, with potentially severe consequences for monsoon-dependent regions such as parts of Africa and South Asia, underscoring that AMOC tipping is not a regional concern alone.
Calls for precaution and preparedness
Given the uncertainty surrounding when—or if—the AMOC might cross a critical threshold, the report urges policymakers to adopt a precautionary approach. It stresses that any additional global warming, and prolonged overshoot of the 1.5°C target, increases the risk of triggering a collapse.
Key recommendations include accelerating emissions reductions, securing long-term funding for ocean observation networks, and developing an early warning system that integrates real-world measurements with climate model simulations. The authors argue that such systems should be embedded directly into policymaking to enable rapid responses.
The report also calls for climate adaptation strategies that account for multiple futures—including scenarios in which parts of Northern Europe cool rather than warm. It emphasises that AMOC collapse should be treated as a real and significant risk, requiring comprehensive risk management frameworks across climate, ocean, and disaster governance.
Science driving policy attention
The findings were developed through the Nordic Tipping Week workshop held in October 2025 in Helsinki and Rovaniemi, bringing together physical oceanographers, climate scientists, and social scientists from across Nordic and international institutions. The initiative was partly motivated by an open letter submitted in 2024 by 44 climate scientists, warning Nordic policymakers that the risks associated with AMOC tipping may have been underestimated.
By consolidating current scientific understanding and translating it into policy-relevant recommendations, the report aims to shift AMOC collapse from a theoretical concern to a concrete risk requiring immediate attention.
Society
Science Is Talking – Why Aren’t We Hearing?
Why the world still struggles to communicate science, and how researchers, journalists, and
institutions can rebuild a broken chain
Have you ever listened to an expert discuss their work and felt like they were speaking a completely different language? You’re not alone. Scientific breakthroughs have the power to shape our health, environment, and future, yet they often remain locked behind a wall of jargon and complexity, failing to reach the public or the policymakers who write our laws.
This communication breakdown creates a “broken chain of knowledge,” with crucial information stuck at its source. The path from a scientific discovery to public understanding and sound policy is fraught with obstacles, from the culture inside the lab to systemic barriers in government.
Let us look at the most significant reasons for this disconnect. By understanding the challenges from the perspectives of scientists, journalists, and policymakers, we can begin to see how we might mend the chain and ensure that knowledge flows to where it’s needed most.

The First Barrier Isn’t a Wall, It’s a Mindset
The communication problem often begins not with external hurdles, but within the culture of science itself. Before a single word is spoken to the public, an internal mindset can prevent scientists from effectively sharing their work. Some researchers operate with what former Indian minister Jairam Ramesh calls a “high pad” mentality, believing their specialized knowledge places them above the need for public engagement.
As Ramesh recently points out at the Science Journalists Conference of India, Ahmedabad University, this attitude is a primary barrier: “Too often I find scientists sitting on a high pad thinking that they have a better knowledge than the rest of the people… they speak in jargon they speak in their own language and they are really appealing to the community and not necessarily to the non-scientific community.”
Dr. Abhijit Majumdar of IIT Bombay acknowledges that scientists are often poor communicators — but he stresses a deeper issue: “Before learning how to communicate, scientists must first appreciate the need to communicate with the general public.” That awareness, he says, is still lacking in many settings. Experts note that this gap persists for two key reasons. The first is mindset: a cultural tendency to work in isolation — an “ivory tower inside their own ego.” The second is Language: after years of specialization, many scientists use technical vocabulary without realizing it’s incomprehensible jargon to outsiders, effectively building a wall where they intend to build a bridge. Overcoming this internal culture is the first step toward unlocking the mutual benefits of communication.

It’s Not ‘Dumbing Down,’ It’s a Two-Way Street
A fundamental misunderstanding of science communication is that it’s simply “dumbing down” complex work; in reality, it is a transformative, two-way exchange that can lead to deeper insights for the researchers themselves.
When scientists are challenged to explain their work to non-experts, they must distill complex ideas to their “’observable conceptual’ level.” This act of translation often forces them to see their own work from a new perspective, uncovering fresh insights. As Dr. Majumdar states, the benefits flow in both directions:
“It’s a two-way street, it is beneficial for the sides if we learn how to communicate.”
Furthermore, this process can generate questions from the public that are “much more superior” to those scientists typically receive from their peers, pushing their research in new and unexpected directions.

A Scientist’s Silence Creates a Vacuum for Misinformation
In our modern digital world, many scientists are hesitant to speak publicly, “scared that one wrong use of the work can be taken out of the context,” potentially leading to professional backlash. While this caution is understandable, it creates a dangerous paradox.
When credible experts stay silent on a complex issue, they create an “information vacuum.” That empty space will not remain empty for long. It is inevitably filled by less informed, less qualified, or even malicious actors eager to become the spokesperson on the topic. The silence of experts, therefore, directly enables the spread of false narratives.
In an era with a “lot of misinformation,” the proactive solution is a strong partnership between cautious, responsible scientists and trusted journalists. This collaboration is the public’s best and most powerful defense against falsehoods.

The System Itself Is Designed to Fail
Even when individual scientists are willing to engage, they are often crushed by systemic and structural barriers. The larger systems governing science and media are frequently not built to support public communication, a problem that is truly global in scope.
Studies reveal a stark reality. Nearly 46% of academics in one study had never communicated their findings beyond peer circles, with 80% citing a lack of time as a major barrier. A global survey of geoscientists found that while 90% believe they have a moral duty to engage, 87% identified a lack of funding as a key obstacle. This isn’t confined to one region; a study in Zimbabwe found nearly half of academics had never shared their research with public audiences.
In India, this is compounded by institutional support that suffers from “irregular funding” and offers little incentive for sustained engagement. Interestingly, a 2020 Pew Research survey found that 75% of Indians believe government investment in science is worthwhile, suggesting a public appetite for knowledge that the system is failing to meet.
Further straining the system is the inherent conflict between the clashing timelines of science and journalism. Science is slow, careful, and methodical, prioritizing peer review and accuracy. The news cycle is instantaneous and reactive, demanding immediate responses for a public hungry for information. This friction between a scientist’s verification process and a journalist’s deadline puts constant stress on the very relationship needed to bridge the knowledge gap.

In Policy, There’s a Structural Wall Between Science and Law
Even when science successfully reaches the public, the final link in the chain—influencing policy—is often completely broken. In India, for instance, Jairam Ramesh describes a profound structural disconnect between the nation’s scientific community and its lawmakers.
He explains that Members of Parliament receive their information almost exclusively from “government bodies” and “ministries,” not from the independent scientific institutions that house the country’s experts. This has led to a glaring absence of science-informed debate on some of the most critical issues facing the nation, including:
- GM crops
- Nuclear policy
- The increasing frequency of landslides and earthquakes
Global warming and its impact on agriculture, health, and energy
To fix this, Ramesh proposes that India’s scientific academies must take a more “active role.” Instead of relying on individuals, these institutions should consolidate a “collective view” from the scientific community and present it directly to legislators, providing an authoritative voice that is much harder for policymakers to ignore.
Building the Bridge, Together
Mending the broken “chain of knowledge” is not a simple task, nor is it the responsibility of a single group. It requires a collaborative effort from scientists who see communication as a duty, journalists who build trust and provide context, and institutions that create systems that reward and support public engagement.
Breaking down these barriers is a critical responsibility for any society that wishes to be guided by evidence and shared understanding. By strengthening every link in the chain—from the lab to our laws—we can build the bridge to a future shaped by insight and reason. If knowledge is power, how can we each help ensure it flows to where it’s needed most?
-
Society1 month agoThe Ten-Rupee Doctor Who Sparked a Health Revolution in Kerala’s Tribal Highlands
-
COP303 months agoBrazil Cuts Emissions by 17% in 2024—Biggest Drop in 16 Years, Yet Paris Target Out of Reach
-
Earth3 months agoData Becomes the New Oil: IEA Says AI Boom Driving Global Power Demand
-
COP303 months agoCorporate Capture: Fossil Fuel Lobbyists at COP30 Hit Record High, Outnumbering Delegates from Climate-Vulnerable Nations
-
Society2 months agoFrom Qubits to Folk Puppetry: India’s Biggest Quantum Science Communication Conclave Wraps Up in Ahmedabad
-
Space & Physics2 months agoIndian Physicists Win 2025 ICTP Prize for Breakthroughs in Quantum Many-Body Physics
-
Women In Science4 months agoThe Data Don’t Lie: Women Are Still Missing from Science — But Why?
-
Health4 months agoAir Pollution Claimed 1.7 Million Indian Lives and 9.5% of GDP, Finds The Lancet


