Connect with us

Society

Why Kerala Has Struggled to Replicate Perinjanam’s Solar Success

In Perinjanam, a small coastal village in Kerala, rooftop solar panels have transformed hundreds of households—slashing electricity bills and proving the potential of community-driven energy. Yet across Kerala, India’s most literate state, similar projects remain rare, revealing the gap between local innovation and statewide adoption. Here is how it can happen.

Dipin Damodharan

Published

on

80 Savings on a Household Electricity Bill jpeg
Office of the Perinjanam Gram Panchayat, the elected local self-government body, which acts as a facilitator for renewable energy programs and other community initiatives. Image by Lakshmi Narayanan/EdPublica

On a humid afternoon in Perinjanam, a coastal panchayat in Thrissur district of the South Indian state Kerala, Susheela leads me into her kitchen and points upstairs to the metal roof. The small array of solar panels there has changed the family’s daily expenses. “Before 2016, our electricity bill was over Rs 1,000 every month. After that, it rarely crosses Rs 200,” she says, folding her hands as if to show how the burden has lifted. “Installing solar panels on the roof has been undoubtedly beneficial. We’ve seen clear savings on our bills,” Susheela says.

Perinjanorjam (Perinjanam Energy), the village’s community-driven rooftop solar initiative, now powers more than a thousand households like Susheela’s and has drawn attention across India. In 2016, the panchayat embarked on what was then an audacious experiment—combining government subsidies, cooperative-bank lending, and local mobilization to make an energy self-reliant village. The results were undeniable on the ground. But the very success that made Perinjanam a poster child has not translated into a replicable model across Kerala. Nine years since its launch, and three years after high-profile endorsements and study visits, other panchayats still hesitate. Why?

The Perinjanam solar project, driven by the collective efforts of local institutions and residents, is celebrated as a model for other panchayats. For a state like Kerala, which relies heavily on electricity from outside, rooftop solar projects are crucial. By involving ordinary families, they demonstrate the strength of a decentralized approach—while also advancing India’s clean energy transition.

80 Savings on a Household Electricity Bill 1 1
A wide view of Perinjanam village in Kerala where renewable energy ambitions meet everyday realities.Image by Lakshmi Narayanan/EdPublica

At COP26, India pledged 500 GW of renewable capacity by 2030. Progress has been steady, with 235.7 GW already in place, but the pace must increase. Decentralized, community-driven initiatives like Perinjanam could help bridge the gap.

What is the Perinjanam Project?

It’s an alternative electricity generation and distribution model, with participation from the public, panchayat, cooperative bank, Kerala State Electricity Board (KSEB), and Solar Energy Corporation of India (SECI), carried out in Perinjanam gram panchayat, Thrissur. Perinjanam, the first panchayat in India to generate 700 kW of rural solar power for itself, is a model for local energy self-sufficiency. Daytime electricity from the solar panels is used for household needs; the surplus is supplied to KSEB’s common pool grid. At night, homes rely on KSEB power. Electricity bills reflect the difference between what is exported and what is imported. If the exported and imported electricity quantities are equal, the only charge is meter rent. The heart of Perinjanam project is a consumer committee set up for project implementation.

Launched in 2016 by then-panchayat president Sachith KK with the support of then Kerala State Electricity Regulatory Commission (KSERC) chairman TM Manoharan, Perinjanam’s solar initiative was born out of their vision, as said by then consumer committee head Noorrudheen to EdPublica. “Sachith learned about SECI’s 500 kW subsidized scheme for solar in Kerala through Manoharan. The idea to use this for local benefit was decisive,” Noorrudheen says.

Through numerous meetings and awareness campaigns, ward members reached out house-to-house to educate people about solar. Since the project started soon after a major solar scam in Kerala, skepticism lingered. The initial plan was for a 500 kW project covering 250 homes, with rooftop units typically ranging from 1 to 5 kW. For Perinjanam residents, many of whom faced financial hardships, participation in the novel project required financial support. Both the panchayat and the cooperative bank (then under CPI(M) leadership) decided after much discussion to give low-interest, collateral-free loans to participants. Noorrudheen credits this bank loan as the key factor that made the Perinjanam project a success. With Manoharan as an advisor, KSEB offered full support. Households with bills above Rs 500 were targeted first. An active, proactive panchayat president engaged the cooperative bank, registered a consumer committee as a one-stop solution for project management, and worked with SECI for subsidies. Thus, Perinjanam stands out as a unique community-driven project involving multiple stakeholders—a model found nowhere else.

According to latest estimates, Perinjanam section’s monthly generation stood at 3.16 MW, now including Kaypamangalam and Mathilakam panchayats. “There are 1008 connections under the Perinjanam section. The project covers 956 houses. The remaining are shops and other institutions. Today the project reached a capacity of 4,305 kW. The total generation is 316,823 units,” says KSEB Assistant Engineer Thara.

The project can produce enough electricity in a year to meet the needs of roughly 4,000–6,000 rural households. Perinjanam has around 5,342 households, according to the last Census report, and a typical rural home in Kerala uses about 97 units per month. That means the plant’s full annual potential—roughly 5.17–6.89 million units—could supply most, if not all, of the panchayat’s households. So far, it has generated 316,823 units, already enough for about a year’s supply to 270 homes, a figure expected to grow as the system completes more annual cycles—enough to power nearly all homes in one or two wards of Perinjanam.

Why Hasn’t Perinjanam Been Replicated?

Apart from achieving energy self-sufficiency through solar power, a 2022 report revealed that the Perinjanam Solar Initiative reduced carbon emissions by 192,000 kilograms. Inspired by Perinjanam’s outcomes, 37 panchayats in Tamil Nadu decided to implement similar projects, and in 2022, a 45-member delegation from Tamil Nadu visited Perinjanam to study the model.

Kerala Chief Minister Pinarayi Vijayan and Finance Minister K N Balagopal had publicly urged other panchayats to adopt the Perinjanam model. However, no other panchayat has followed suit so far. Let us look at the reasons behind this.

One major reason, as often pointed out, is that the Perinjanam Solar Project was not a flagship initiative of the panchayat itself. The panchayat acted only as a facilitator, while it was the consumer committee that took the lead in implementation. The project originated from the idea of the then panchayat president, who pushed it forward, but what truly set it apart was the proactive role of the consumer committee.

The Perinjanam model is in fact the most practical and replicable model for other panchayats. What makes it unique is the structure of its consumer committee, a 14-member registered body that oversees everything—including the maintenance of solar units and overall project management. Earlier, the panchayat president himself was part of the committee. However, with a change in the elected local body, the current panchayat committee appears less interested in the project. The consumer committee members are elected annually by the beneficiaries themselves. “It is this committee system that keeps the initiative alive,” explains Noorrudheen.

Untitled design 34
Office of the Perinjanam Gram Panchayat, the elected local self-government body.Image by Lakshmi Narayanan/EdPublica

Our visit to the panchayat office confirmed this impression: informally, top officials acknowledged that the panchayat functions only as a facilitator. And the response reflects their lack of interest. “For Perinjanam’s success to spread elsewhere, what is needed most is government-level intervention,” says Sachith. He recalls that Finance Minister Balagopal even mentioned Perinjanam in his budget speech, urging local bodies to adopt such initiatives. “But that is not enough,” he argues. Each year, the government issues guidelines listing ten mandatory activities/action plans for local bodies. Unless rooftop solar—implemented with people’s investment, cooperative bank support, and government subsidies—is included in that framework, and unless it becomes part of the annual project plan, real expansion will not happen. “So far, no such directive has come. That is a big reason for the failure,” Sachith adds. “If each of Kerala’s 956 panchayats installed even one megawatt, which alone would add up to 956 MW. People are willing to invest their money; cooperative banks only need to support those who cannot afford the upfront cost. It requires far less effort and expense than building new power projects. But it must be made mandatory to install 1 MW of solar energy in every Panchayat,” he insists.

Another barrier is the lack of awareness. “People do not fully understand what green energy is, nor why shifting to it is important,” says the former panchayat president. “I installed a 4 kW rooftop solar unit at my house. I own an electric scooter and even an electric car. But very few people think about how far we can run an entire household on green energy.”

There is also the issue of local body leadership. Panchayat leaders often fail to think innovatively about the possibilities before them. “We once used CSR funds to power streetlights with rooftop solar. The panchayat, which had an electricity bill of Rs 90,000(approximately $1,015.50) , reduced it by nearly Rs 30,000 ($338.50),” recalls Sachith.

For N K Sathyanathan, who was the president of the local cooperative bank during the project’s rollout, the main barrier to replication elsewhere is lack of financial support mechanisms. “When we began Perinjanam Solar, cooperative banks technically had no provision to offer loans for rooftop solar. But with the support of the then panchayat president and Manoharan from KSEB, we devised a sub-rule to make it possible,” he explains. The bank allocated Rs 1 crore for loans, offering up to Rs 50,000 per individual with minimal collateral—family members could stand as mutual guarantors, without the need for extra security. The loans were offered at low interest and had a 36-month repayment period. Over 300 households received loans in the first phase, and almost all repaid ahead of schedule, without a single default.

Sathyanathan argues that if Kerala’s many cooperative banks adopt a similar loan framework, it could unleash a revolution in rooftop solar. He recalls even Tamil Nadu officials asking him how they managed it, and he shared their model of innovative lending. “When electricity demand rises, states often turn to nuclear or hydro projects. But rooftop solar is a viable alternative. If encouraged, Kerala would never need to depend on buying electricity from other states,” he says. “The government doesn’t lose a single rupee on this model.”

Noorrudheen adds that affordable financing is crucial to expand rooftop solar to low-income households. He also stresses that consumer committees are vital: since these are long-term projects, relying on elected panchayat bodies alone is risky, because changes in leadership after elections can disrupt continuity. Instead, projects should be run by independent consumer committees, supported by the panchayat. Ensuring the availability of technical experts even after the warranty period is another key requirement.

Premlal, convener, consumer committee, thinks that the lack of interest from agencies like KSEB is also a factor. “The Perinjanam project happened due to a confluence of many factors—the vision of the then panchayat leadership, intervention by the KSEB regulatory commission chairman, Manoharan’s initiative, and crucially, cooperative bank financing. Many residents also invested from their own pockets. Unless such elements come together, replication elsewhere will remain difficult.”

“At that time, about 500 people in Perinjanam were aware of solar. It was significant that a 1 kW system could be installed for Rs 45,500 (approximately $664–$684 USD at 2016 exchange rates),” says Sachith. The project was implemented by a 14-member solar consumer committee chaired by the panchayat president, with the panchayat serving as facilitator and eligible houses enrolled. SECI sanctioned a Rs 19,500 subsidy per kW, bringing the actual cost per kW to Rs 65,000; consumers paid only Rs 45,500. The committee handled documentation, SECI coordination, and contracting, freeing consumers from hassles. Contractors were selected through competitive quotations. GPR Power Solutions (Chennai) was contracted for implementation, and the consumer committee continues to manage maintenance. Loans to the tune of Rs 1.3 crore were taken from the cooperative bank for the project.

Lives Transformed

“Rooftop units range from 1 to 5 kW, with the initial target being 500 kW; it’s presumed now to exceed 4,000 kW. Perinjanam’s success inspired others, and the project is a global model—environmentally, too, its benefits are clear. People are very satisfied,” says consumer committee convener Premlal, a fact confirmed by the EdPublica team’s field visit.

Still, people have some anxieties about new regulations. “We installed our solar unit at launch, with Manoharan’s advice. Our bills now are just Rs 130–200. But there are rumors of rule changes, and that worries us,” says Susheela, a Perinjanam homemaker. Recently, bill amounts have increased, which she and others have brought up with the committee. She adds: “We’ve never had any problem with the solar unit. When the panel broke, it was replaced free.” Susheela’s family installed a 2 kW unit via loan; the process was smooth and the amount repaid in two years.

Perinjanam Susheela
Susheela, a resident of Perinjanam, outside her home powered by a 2-kilowatt rooftop solar system. Another resident, Bharathan (left), stopped by for a conversation.
Image by Lakshmi Narayanan/EdPublica

Rahimabi, another resident, notes that bills initially came down to Rs 250 but are now as high as Rs 1,000 again, which concerns her. Bharathan, a Gulf returnee, has a 2 kW unit and says he’s never had a maintenance issue. He worries about a possible rule requiring battery storage for units above 3 kW and says his panel may soon need replacing. His monthly bill, once Rs 900–Rs 1,000, is now just Rs 300, but he laments the low compensation from KSEB and the risk of full supply loss in a power cut.

Prajitha and Sreekanth’s family, among the first solar homes in the panchayat, added battery storage alongside their unit because of concerns about rising bills. “Earlier, my bill was Rs 900. Now, we pay only the meter rent—Rs 140. There have been no maintenance issues so far.”

Premlal also reports quick payback and additional income for higher producers, and Sathyan master, another resident, claims he got back as much as Rs 2,000 after use. One house, for instance, produces 17 units per day, and some households that both produce and consume solar energy (prosumers) have earned up to Rs 9,000 by selling power back to KSEB. At the same time, the reality is that the project has not yet reached everyone in the panchayat. “I have never heard about such a solar initiative,” says Raphael, a mason and resident of Perinjanam. Sukanya, a homemaker from Perinjanam, adds, “I had no awareness of such a project, and when I first heard about it, it seemed like something that would cost a lot of money.”

Perinjanam Inside
Rooftop solar–powered homes in Perinjanam village, Thrissur district. Though Kerala trails behind national rooftop solar targets, local households are beginning to adopt the shift.
Image by Lakshmi Narayanan/EdPublica

Why Kerala Needs Rooftop Solar

According to the Ministry of New and Renewable Energy, Kerala currently ranks 13th in the country in terms of installed renewable energy capacity. Across India, nearly 80% of newly added renewable units are solar-based. Government figures show that India has overtaken Japan to become the world’s third-largest solar producer. As of July 2025, the country’s cumulative solar capacity stands at 119.92 GW—of which 19.88 GW comes from grid-connected rooftop systems and 5.09 GW from off-grid installations. Notably, Kerala does not figure among the regions identified by the Centre as high-potential zones for renewable energy.

States like Rajasthan, Gujarat, and Madhya Pradesh have tackled the solar energy challenge by setting up vast solar farms spread across thousands of hectares. Kerala, however, does not have such an option due to its limited land availability. “But there is immense potential for rooftop solar here,” says Sreekanth, an independent researcher in the field.

Data visualization by EdPublica, created with Flourish

According to official government reports, Kerala’s installed solar capacity stands at 1,792.34 MW. Of this, the installed rooftop solar capacity is just 24.93 MW. Data released by the Ministry of New and Renewable Energy (MNRE) shows that the state’s total renewable energy capacity is 4,106.78 MW. This means rooftop solar contributes only 1.39% of Kerala’s total solar capacity, and just 0.61% of the overall renewable energy capacity.

Kerala has set ambitious targets: to achieve 100% renewable energy by 2040 and to become a net carbon-neutral state by 2050. The Kerala State Action Plan on Climate Change 2023–2030 (Kerala SAPCC 2.0), released by the Chief Minister, outlines several programmes and strategies designed to help the state reach these goals.

Data visualization by EdPublica, created with Flourish

In this journey, rooftop solar projects will have a decisive role to play. Kerala now has 152,000 rooftop units (946.9 MW), a top growth record under the PM Surya Ghar programme—yet only 2 percent of its 13 million energy consumers use rooftop solar. Critics say new policies have raised fresh challenges, even as KSEB imports about 70% of its electricity from outside. Solar remains the best alternative.

Rising Challenges

Noorrudheen points out a growing concern: because of the current approach of the government and KSEB, solar power is becoming a less attractive option for ordinary people.

KSEB, however, argues that there is another side to the issue raised earlier by Bharathan. According to the utility, grid-connected solar units can impose additional costs on consumers. In Kerala, peak electricity demand occurs between 6 p.m. and 11 p.m., whereas households that both produce and consume solar energy (prosumers) use only about 36% of the power they generate. The rest is exported to the grid. But at night, they draw back about 45% of their supplied energy. On average, KSEB purchases only 19% of the solar power generated daily.

This mismatch adds financial pressure: because electricity costs rise during peak hours, KSEB estimates that the power banking arrangement could result in losses of nearly Rs 500 crore in FY 2024–25. This translates into a 19-paise increase per unit of electricity for Kerala’s 13 million consumers.

If rooftop solar systems above 3 kW are installed without battery storage, this burden is expected to rise further in coming years. KSEB projects that by 2034–35, consumers may face an additional 39 paise per unit due to this imbalance. These figures form the basis of the argument for making battery storage mandatory, though such a move poses another serious challenge for scaling up rooftop solar projects. At present, Kerala ranks fourth in India in terms of installed rooftop solar capacity, behind Gujarat, Maharashtra, and Rajasthan.

Regulatory Impacts on Rooftop Solar Adoption

The regulatory framework may further affect adoption. The Kerala State Electricity Regulatory Commission (KSERC) has proposed restricting net metering to systems under 3 kW, down sharply from the earlier 1 MW limit. Larger consumers would instead fall under net billing or gross metering, which are far less favourable.

Financial implications are significant. Under net billing, exported solar power is priced at the Solar Energy Corporation of India (SECI) discovered tariff, often as low as Rs 2–2.5 per kWh, compared to the Rs 3.59 per kWh retail tariff that consumers pay when buying from the grid. This pricing difference reduces savings and extends the payback period of rooftop solar investments. Moreover, households may need to install costly battery storage systems, which are not subsidized and can cost Rs 16,000–18,000 per kWh of capacity.

Market Consequences

Impact on adoption has already become visible. Reports suggest that Kerala’s monthly rooftop solar installation rate has dropped from 15 MW to just 5–6 MW since the draft regulations were introduced. While regulators argue the changes are necessary to ensure grid stability and minimize utility losses, the burden of balancing the grid has effectively been shifted to individual consumers. This risks discouraging both new and existing users from investing in rooftop solar, potentially slowing down Kerala’s progress toward its 2040 renewable energy and 2050 carbon-neutrality goals.

Perinjanam’s New Phase

“As part of the next stage of growth, Perinjanam is set to introduce battery storage as a new model,” says Sachith. A Battery Energy Storage System (BESS) in solar refers to a sophisticated system that stores electrical energy generated from solar panels in advanced rechargeable batteries for later use. This allows energy to be captured during peak solar production, stored when the sun isn’t shining, and then discharged during times of high demand or low solar output. BESS systems improve grid stability by balancing supply and demand, provide backup power during outages, and enhance the integration of intermittent renewable energy sources like solar.

“In our model, the electricity we generate will be stored and then supplied to KSEB during peak hours. At present, we receive just Rs 2.83 per unit, but with this system it could increase to as much as seven rupees,” Sachith explains. He stresses that such storage models must be widely implemented across Kerala. The Perinjanam project is already moving forward with this plan. The first unit will have a 500-kilowatt capacity, with an investment of around Rs 1.5 crore for battery storage. Of this, 10% will be contributed by the consumer committee, while the remaining 90% will come from a mix of 50% subsidy and 40% viability gap funding. The committee has also demanded a 20% profit margin.

With the successful implementation of this initiative, Perinjanam Solar is expected to gain greater recognition and be discussed at a much larger scale…

(This story was produced with support from Internews Earth Journalism Network)

Dipin is the Co-founder and Editor-in-Chief of EdPublica. A journalist and editor with over 15 years of experience leading and co-founding both print and digital media outlets, he has written extensively on education, politics, and culture. His work has appeared in global publications such as The Huffington Post, The Himalayan Times, DailyO, Education Insider, and others.

Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *

Climate

Could Global Warming Make Greenland, Norway and Sweden Much Colder?

A Nordic Council report warns that global warming could make Norway colder if the Atlantic ocean circulation collapses, triggering severe climate impacts.

Published

on

Could Global Warming Make Greenland, Norway and Sweden Much Colder? Nordic Report Says Yes
A new Nordic report warns global warming could drive parts of northern Europe into far colder conditions if a major Atlantic ocean current collapses. Hamnøy, Norway. Image credit: Petr Slováček/Pexels.

Global warming is usually associated with rising temperatures—but a new Nordic report warns it could drive parts of northern Europe into far colder conditions if a major Atlantic ocean current collapses.

Greenland, Norway and Sweden could experience significantly colder climates as the planet warms, according to a new report by the Nordic Council of Ministers that examines the risks linked to a possible collapse of the Atlantic Meridional Overturning Circulation (AMOC).

The report, A Nordic Perspective on AMOC Tipping, brings together the latest scientific evidence on how global warming is slowing the AMOC—one of the world’s largest ocean circulation systems, responsible for transporting heat from the tropics to the North Atlantic. While a full collapse is considered unlikely, the authors warn that it remains possible even at relatively low levels of global warming, with potentially disruptive consequences for northern countries.

The Reversal

If the circulation were to weaken rapidly or cross a tipping point, the report notes, northern Europe could cool sharply even as the rest of the world continues to warm. Such a reversal would have wide-ranging effects on food production, energy systems, infrastructure, and livelihoods across the Nordic region.

“The AMOC is a key part of the climate system for the Nordic region. While the future of the AMOC is uncertain, the potential for a rapid weakening or collapse is a risk we need to take seriously,” said Aleksi Nummelin, Research Professor at the Finnish Meteorological Institute, in a media statement. “This report brings together current scientific knowledge and highlights practical actions for mitigation, monitoring and preparedness.”

A climate paradox

The AMOC plays a central role in maintaining the relatively mild climate of Northern Europe. As global temperatures rise, melting ice from Greenland and increased freshwater input into the North Atlantic are expected to weaken this circulation. According to the report, such changes could reduce heat transport northwards, leading to colder regional conditions—particularly during winter—even under a globally warming climate.

Scientists caution that the impacts would not simply mirror gradual climate change trends. Instead, an AMOC collapse could trigger abrupt and uneven shifts, including expanded sea ice, stronger storms, altered rainfall patterns, and rising sea levels along European coastlines. Some of these impacts would occur regardless of when or how quickly the circulation weakens.

The report also highlights global ripple effects. A slowdown of the AMOC could shift the tropical rain belt southwards, with potentially severe consequences for monsoon-dependent regions such as parts of Africa and South Asia, underscoring that AMOC tipping is not a regional concern alone.

Calls for precaution and preparedness

Given the uncertainty surrounding when—or if—the AMOC might cross a critical threshold, the report urges policymakers to adopt a precautionary approach. It stresses that any additional global warming, and prolonged overshoot of the 1.5°C target, increases the risk of triggering a collapse.

Key recommendations include accelerating emissions reductions, securing long-term funding for ocean observation networks, and developing an early warning system that integrates real-world measurements with climate model simulations. The authors argue that such systems should be embedded directly into policymaking to enable rapid responses.

The report also calls for climate adaptation strategies that account for multiple futures—including scenarios in which parts of Northern Europe cool rather than warm. It emphasises that AMOC collapse should be treated as a real and significant risk, requiring comprehensive risk management frameworks across climate, ocean, and disaster governance.

Science driving policy attention

The findings were developed through the Nordic Tipping Week workshop held in October 2025 in Helsinki and Rovaniemi, bringing together physical oceanographers, climate scientists, and social scientists from across Nordic and international institutions. The initiative was partly motivated by an open letter submitted in 2024 by 44 climate scientists, warning Nordic policymakers that the risks associated with AMOC tipping may have been underestimated.

By consolidating current scientific understanding and translating it into policy-relevant recommendations, the report aims to shift AMOC collapse from a theoretical concern to a concrete risk requiring immediate attention.

Continue Reading

Society

Science Is Talking – Why Aren’t We Hearing?

Why the world still struggles to communicate science, and how researchers, journalists, and
institutions can rebuild a broken chain

Published

on

featured

Have you ever listened to an expert discuss their work and felt like they were speaking a completely different language? You’re not alone. Scientific breakthroughs have the power to shape our health, environment, and future, yet they often remain locked behind a wall of jargon and complexity, failing to reach the public or the policymakers who write our laws.

This communication breakdown creates a “broken chain of knowledge,” with crucial information stuck at its source. The path from a scientific discovery to public understanding and sound policy is fraught with obstacles, from the culture inside the lab to systemic barriers in government.

Let us look at the most significant reasons for this disconnect. By understanding the challenges from the perspectives of scientists, journalists, and policymakers, we can begin to see how we might mend the chain and ensure that knowledge flows to where it’s needed most.

j2

The First Barrier Isn’t a Wall, It’s a Mindset

The communication problem often begins not with external hurdles, but within the culture of science itself. Before a single word is spoken to the public, an internal mindset can prevent scientists from effectively sharing their work. Some researchers operate with what former Indian minister Jairam Ramesh calls a “high pad” mentality, believing their specialized knowledge places them above the need for public engagement.

As Ramesh recently points out at the Science Journalists Conference of India, Ahmedabad University, this attitude is a primary barrier: “Too often I find scientists sitting on a high pad thinking that they have a better knowledge than the rest of the people… they speak in jargon they speak in their own language and they are really appealing to the community and not necessarily to the non-scientific community.”

Dr. Abhijit Majumdar of IIT Bombay acknowledges that scientists are often poor communicators — but he stresses a deeper issue: “Before learning how to communicate, scientists must first appreciate the need to communicate with the general public.” That awareness, he says, is still lacking in many settings. Experts note that this gap persists for two key reasons. The first is mindset: a cultural tendency to work in isolation — an “ivory tower inside their own ego.” The second is Language: after years of specialization, many scientists use technical vocabulary without realizing it’s incomprehensible jargon to outsiders, effectively building a wall where they intend to build a bridge. Overcoming this internal culture is the first step toward unlocking the mutual benefits of communication.

j3

It’s Not ‘Dumbing Down,’ It’s a Two-Way Street

A fundamental misunderstanding of science communication is that it’s simply “dumbing down” complex work; in reality, it is a transformative, two-way exchange that can lead to deeper insights for the researchers themselves.

When scientists are challenged to explain their work to non-experts, they must distill complex ideas to their “’observable conceptual’ level.” This act of translation often forces them to see their own work from a new perspective, uncovering fresh insights. As Dr. Majumdar states, the benefits flow in both directions:

“It’s a two-way street, it is beneficial for the sides if we learn how to communicate.”

Furthermore, this process can generate questions from the public that are “much more superior” to those scientists typically receive from their peers, pushing their research in new and unexpected directions.

j4

A Scientist’s Silence Creates a Vacuum for Misinformation

In our modern digital world, many scientists are hesitant to speak publicly, “scared that one wrong use of the work can be taken out of the context,” potentially leading to professional backlash. While this caution is understandable, it creates a dangerous paradox.

When credible experts stay silent on a complex issue, they create an “information vacuum.” That empty space will not remain empty for long. It is inevitably filled by less informed, less qualified, or even malicious actors eager to become the spokesperson on the topic. The silence of experts, therefore, directly enables the spread of false narratives.

In an era with a “lot of misinformation,” the proactive solution is a strong partnership between cautious, responsible scientists and trusted journalists. This collaboration is the public’s best and most powerful defense against falsehoods.

j5

The System Itself Is Designed to Fail

Even when individual scientists are willing to engage, they are often crushed by systemic and structural barriers. The larger systems governing science and media are frequently not built to support public communication, a problem that is truly global in scope.

Studies reveal a stark reality. Nearly 46% of academics in one study had never communicated their findings beyond peer circles, with 80% citing a lack of time as a major barrier. A global survey of geoscientists found that while 90% believe they have a moral duty to engage, 87% identified a lack of funding as a key obstacle. This isn’t confined to one region; a study in Zimbabwe found nearly half of academics had never shared their research with public audiences.

In India, this is compounded by institutional support that suffers from “irregular funding” and offers little incentive for sustained engagement. Interestingly, a 2020 Pew Research survey found that 75% of Indians believe government investment in science is worthwhile, suggesting a public appetite for knowledge that the system is failing to meet.

Further straining the system is the inherent conflict between the clashing timelines of science and journalism. Science is slow, careful, and methodical, prioritizing peer review and accuracy. The news cycle is instantaneous and reactive, demanding immediate responses for a public hungry for information. This friction between a scientist’s verification process and a journalist’s deadline puts constant stress on the very relationship needed to bridge the knowledge gap.

j6

In Policy, There’s a Structural Wall Between Science and Law

Even when science successfully reaches the public, the final link in the chain—influencing policy—is often completely broken. In India, for instance, Jairam Ramesh describes a profound structural disconnect between the nation’s scientific community and its lawmakers.

He explains that Members of Parliament receive their information almost exclusively from “government bodies” and “ministries,” not from the independent scientific institutions that house the country’s experts. This has led to a glaring absence of science-informed debate on some of the most critical issues facing the nation, including:

  • GM crops
  • Nuclear policy
  • The increasing frequency of landslides and earthquakes

Global warming and its impact on agriculture, health, and energy

To fix this, Ramesh proposes that India’s scientific academies must take a more “active role.” Instead of relying on individuals, these institutions should consolidate a “collective view” from the scientific community and present it directly to legislators, providing an authoritative voice that is much harder for policymakers to ignore.

Building the Bridge, Together

Mending the broken “chain of knowledge” is not a simple task, nor is it the responsibility of a single group. It requires a collaborative effort from scientists who see communication as a duty, journalists who build trust and provide context, and institutions that create systems that reward and support public engagement.

Breaking down these barriers is a critical responsibility for any society that wishes to be guided by evidence and shared understanding. By strengthening every link in the chain—from the lab to our laws—we can build the bridge to a future shaped by insight and reason. If knowledge is power, how can we each help ensure it flows to where it’s needed most?

Continue Reading

Climate

A Green Turn with Gaps: India’s Budget Backs Clean Tech but Skips Climate Adaptation

India’s Budget 2026–27 doesn’t shout climate ambition—but it hardwires it into clean manufacturing, carbon capture and energy supply chains, quietly reshaping the country’s green economy from the inside out.

Dipin Damodharan

Published

on

Clean Energy, Carbon Capture—and a Quiet Omission: Reading Budget 2026–27 Through a Climate Lens
India’s Union Minister for Finance and Corporate Affairs, Nirmala Sitharaman along with the Minister of State for Finance, Pankaj Chaudhary as well as her Budget Team of the Ministry of Finance before presentation of the Union Budget-2026 at Parliament House, in New Delhi. Image credit: PIB

India’s Union Budget 2026–27 may not carry a standalone climate chapter, but its green intent runs deep through the fine print. From carbon capture and battery storage to critical minerals and clean manufacturing, the budget signals a strategic shift: climate action is no longer framed as an environmental add-on, but as industrial policy and economic risk management rolled into one.

Presented by Finance Minister Nirmala Sitharaman on February 1, 2026, the budget places clean energy and climate-aligned manufacturing at the heart of India’s growth narrative. With a GDP growth target of around 7 percent and a sharp focus on fiscal discipline, sustainability is being embedded into supply chains, cities, transport and finance—quietly but deliberately.

Carbon Capture Takes Centre Stage

The most striking climate-linked announcement is the Rs 20,000 crore allocation over five years for Carbon Capture, Utilisation and Storage (CCUS), aimed at hard-to-abate sectors such as power, steel, cement, refineries and chemicals. For the first time, industrial decarbonisation is being backed at scale through public finance, signalling recognition that renewables alone cannot carry India’s net-zero journey.

As Arunabha Ghosh of CEEW notes, the budget’s “prioritisation of carbon capture, utilisation and storage across power, steel, cement, refineries, and chemicals” places these sectors squarely at the centre of India’s long-term climate pathway. This marks a decisive move from aspiration to infrastructure.

Untitled design 28

Building the Clean Energy Ecosystem

The energy transition is supported by coordinated allocations across key ministries: Rs 32,915 crore for New and Renewable Energy, Rs 29,997 crore for Power, and Rs 24,124 crore for Atomic Energy. Customs duty exemptions have been extended to lithium-ion cells used in battery energy storage systems, inputs for solar glass manufacturing, and nuclear power project imports till 2035.

Aarti Khosla of Climate Trends captures this shift succinctly: “Coupled with the exemption given to battery manufacturing, VGF for BESS and grant to CCUS, the focus of the government is rightly tilting towards building an energy transition ecosystem.” She adds that continued reforms in power distribution could bring “360-degree improvement in India’s green energy supply chain.”

At the household level, the PM Surya Ghar Muft Bijli Yojana receives a major boost, reinforcing decentralised clean energy as a pillar of inclusive growth. Rooftop solar is increasingly being positioned not just as a climate solution, but as a competitiveness tool for small businesses and urban households.

Supply Chains, Not Just Solar Panels

Rather than headline-grabbing renewable capacity targets, Budget 2026–27 leans into industrial resilience. Duty exemptions for critical minerals processing equipment, solar glass inputs, and battery storage components underline a focus on domestic value addition.

Energy analyst Duttatreya Das of Ember observes that while there are “no big-ticket announcements for renewables,” the continued duty exemptions and manufacturing reforms are expected to “quietly strengthen clean energy supply chains.” This reflects a broader policy philosophy: competitiveness before capacity, foundations before scale.

Rare Earth Corridors and incentives for mineral-rich coastal states further indicate a push to secure upstream inputs essential for EVs, batteries, wind turbines and electronics—areas where geopolitical vulnerabilities are growing.

Clean Mobility and Greener Cities

Sustainability also shapes transport and urban planning. The budget proposes 20 new national waterways over five years, aims to double the share of inland and coastal shipping by 2047, and identifies seven high-speed rail corridors as environmentally sustainable growth connectors. Municipal finance incentives—such as Rs 100 crore support for cities issuing large bonds—open space for green urban infrastructure, including pollution control and climate-resilient services.

Labanya Prakash Jena,Director, Climate and Sustainability Initiative, highlights that such incentives can catalyse “green municipal bonds, particularly for pollution control and urban environmental projects,” linking fiscal reform directly with urban sustainability.

The Gaps That Remain

Despite these advances, the budget remains notably silent on climate adaptation. Heat stress, floods, water scarcity and climate-resilient agriculture receive no scaled-up fiscal roadmap. Vibhuti of IEEFA points out that while support for decentralised renewables and bioenergy has increased, spending on transmission and energy storage has stagnated or declined—areas that are “not optional but indispensable” for a high-renewables grid.

The absence of strong EV demand-pull measures and limited risk-sharing instruments for private capital also signal unfinished business in India’s clean transition.

A Budget of Signals, Not Slogans

Budget 2026–27 is not a climate manifesto. Instead, it is a signal budget—one that rewires incentives, de-risks clean manufacturing, and treats decarbonisation as an economic strategy rather than a moral appeal. Its strength lies in industrial tools and fiscal realism; its weakness, in adaptation and social resilience.

Whether this quiet green turn translates into measurable emissions reductions and climate resilience will depend on execution, state capacity, and private investment. But one thing is clear: India’s clean-tech transition has now entered the core of its economic planning.

Continue Reading

Trending