Connect with us

Society

Swami Vivekananda — The Monk Behind India’s Greatest Science Institute

Long before the Indian Institute of Science took shape in Bangalore, it existed as a conversation at sea—between a monk, an industrialist, and an idea powerful enough to challenge empire. This is the lesser-known story of how India imagined its scientific future.

Dipin Damodharan

Published

on

swami

The Indian Institute of Science (IISc), today a global leader in scientific research and India’s top-ranked higher education institution, owes its origin to more than institutional foresight or industrial philanthropy alone. It is the product of an unusual intellectual alliance, forged at sea, sustained through resistance, and animated by a radical idea for its time: that science in India must grow from freedom, reason, and national purpose.

While the name of Jamsetji Tata rightly dominates the institute’s formal history, two other figures—often relegated to the margins—played decisive roles in shaping the idea that would eventually become IISc: Swami Vivekananda, arguably the most influential Indian monk in modern history, and his closest disciple, Sister Nivedita. Their influence did not merely inspire an institution; it articulated a philosophy of scientific self-reliance that would later define modern India.

A Conversation at Sea: Vivekananda and Tata

In the summer of 1893, during a voyage from Japan to Canada, two men from vastly different worlds found themselves in sustained conversation. One was Swami Vivekananda, then a 30-year-old monk, unknown internationally but already possessed of a formidable intellect and a sweeping vision for India’s future. The other was Jamsetji Tata, a leading industrialist deeply invested in India’s economic and industrial transformation.

Their discussions during this journey proved consequential. Vivekananda spoke passionately about India’s structural weakness: a civilisation rich in spiritual capital yet reduced to exporting raw materials while importing finished goods. For India to regain dignity and autonomy, he argued, scientific and technological education had to become central—not in imitation of the West, but rooted in India’s own needs and conditions. He suggested Tata to think on that lines.

Tata, already an influential figure in India’s industrial landscape, was deeply moved by Vivekananda’s ideas. Although the monk’s vision was far-reaching and idealistic, Tata recognized its importance and resolved to act upon it. This was the beginning of Tata’s long-standing commitment to the advancement of science in India. Vivekananda’s ideas gave philosophical coherence to Tata’s industrial instincts, transforming them into a national project rather than a private enterprise.

From Idea to Commitment

Five years later, in 1898, Tata wrote to Vivekananda, recalling their shipboard conversation and seeking his guidance for a proposed research institute. By then, Vivekananda had returned from his celebrated travels abroad, having profoundly altered Western perceptions of India.

In his letter, Tata outlined his intention to establish a research institution devoted to both natural and humanistic sciences, supported by residential communities of scholars. He pledged £200,000—an extraordinary sum at the time—to bring this vision into being.

“I trust you remember me as a fellow-traveller on your voyage from Japan to Chicago. I very much recall at this moment your views on the growth of the ascetic spirit in India, and the duty, not of destroying, but of diverting it into useful channels.

I recall these ideas in connection with my scheme of a Research Institute of Science for India, of which you have doubtless heard or read. It seems to me that no better use can be made of the ascetic spirit than the establishment of monasteries or residential halls for men dominated by this spirit, where they should live with ordinary decency, and devote their lives to the cultivation of sciences – natural and humanistic. I am of opinion that if such a crusade in favour of an asceticism of this kind were undertaken by a competent leader, it would greatly help asceticism, science, and the good name of our common country; and I know not who would make a more fitting general of such a campaign than Vivekananda,” Tata wrote in the letter.

Vivekananda’s response, published in the April 1899 issue of Prabuddha Bharata magazine, was unequivocal in its endorsement:

“We are not aware if any project at once so opportune and so far-reaching in its beneficent effects was ever mooted in India, as that of the post-graduate research university of Mr. Tata. The scheme grasps the vital point of weakness in our national well-being with a clearness of vision and tightness of grip, the masterliness of which is only equalled by the munificence of the gift with which it is ushered to the public.

It is needless to go into the details of Mr. Tata’s scheme here. Every one of our readers must have read Mr. Padsha’s lucid exposition of them. We shall try to simply state here the underlying principle of it. If India is to live and prosper and if there is to be an Indian nation which will have its place in the ranks of the great nations of the world, the food question must be solved first of all. And in these days of keen competition, it can only be solved by letting the light of modern science penetrate every pore of the two giant feeders of mankind: agriculture and commerce.”

WhatsApp Image 2025 01 12 at 17.48.09
Image credit: Dipin Damodharan/EdPublica

Although Vivekananda could not personally lead the initiative—bound as he was to his monastic responsibilities—his intellectual sanction gave the project moral authority. He urged his disciples to support it fully.

Sister Nivedita and the Battle for the Institute

Among those disciples, Sister Nivedita emerged as the most tireless advocate of Tata’s vision. Deeply invested in India’s intellectual regeneration, she recognised the proposed institute as essential to national self-respect and autonomy.

nivedita

Through articles in English-language newspapers and sustained public engagement, she defended the project against skepticism and delay. In 1899, she wrote:

“We are not aware if any project is at once so opportune and so far-reaching in its beneficent effects as that of the Post-Graduate Research University of Mr. Tata. The scheme grasps the vital point of weakness in our national well-being with a clearness of vision and tightness of grip.”

Her efforts proved crucial at a time when the British colonial establishment viewed Indian scientific ambition with suspicion.

Colonial Resistance and Intellectual Pushback

The proposal encountered formidable resistance. Lord Curzon dismissed the idea outright, questioning whether Indians were capable of advanced scientific research. Later, William Ramsay, tasked with reviewing the proposal, rejected it on the grounds that science and the humanities could not coexist within a single institution—a judgment steeped as much in colonial prejudice as in academic opinion.

Undeterred, Nivedita took the campaign to London, enlisting figures such as William James and Patrick Geddes. James, in particular, insisted that the institute must remain autonomous and nationally governed, free from bureaucratic control.

Realisation After Loss

Jamsetji Tata died in 1904, two years after Vivekananda. Yet the idea they had shaped survived them both. In 1909, under Lord Minto, the proposal finally received approval.

Though originally planned for Bombay, the institute was established in Bangalore after Krishnaraj Wadiyar donated 370 acres of land. His father, Chamaraja Wadiyar, had been instrumental in supporting Vivekananda’s early travels to the West.

The IISc would later become the intellectual seedbed for institutions such as the Tata Institute of Fundamental Research and the Indian Institutes of Technology.

Legacy Beyond Recognition

While Tata’s name remains inseparable from IISc, the intellectual and moral architecture of the institute bears the unmistakable imprint of Vivekananda and Sister Nivedita. Vivekananda’s insistence on freedom, reason, and disciplined inquiry—and Nivedita’s relentless defence of those principles—ensured that the institute was conceived not as a colonial appendage, but as a national institution rooted in Indian epistemology.

iisc
Indian Institute of Science when it was just completed. Image credit: tata.com

Vivekananda’s philosophy rejected blind authority in all forms. He always suggested that: Rational truth must be accepted from anyone; irrational claims must be rejected, even if spoken by authority.

That commitment to intellectual freedom lies at the heart of IISc. The institute stands today not merely as a centre of scientific excellence, but as a living testament to an idea: that India’s freedom, dignity, and future depend on the fearless union of reason and responsibility.

IISc stands, more than a century later, as evidence that India’s scientific future was imagined not only in boardrooms and government files, but in conversations about freedom, reason, and responsibility. It is a reminder that the pursuit of science, when rooted in national self-respect, becomes an act of civilisation-building.

Dipin is the Co-founder and Editor-in-Chief of EdPublica. A journalist and editor with over 15 years of experience leading and co-founding both print and digital media outlets, he has written extensively on education, politics, and culture. His work has appeared in global publications such as The Huffington Post, The Himalayan Times, DailyO, Education Insider, and others.

Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *

Technology

From Tehran Rooftops To Orbit: How Elon Musk Is Reshaping Who Controls The Internet

How Starlink turned the sky into a battleground for digital power — and why one private network now challenges the sovereignty of states

Dipin Damodharan

Published

on

From Tehran Rooftops To Orbit: How Starlink Is Reshaping Who Controls The Internet
AI-assisted illustration | S James / EdPublica

On a rooftop in northern Tehran, long after midnight, a young engineering student adjusts a flat white dish toward the sky. The city around him is digitally dark—mobile data throttled, social media blocked, foreign websites unreachable. Yet inside his apartment, a laptop screen glows with Telegram messages, BBC livestreams, and uncensored access to the outside world.

Scenes like this have appeared repeatedly in footage from Iran’s unrest broadcast by international news channels.

But there’s a catch. The connection does not travel through Iranian cables or telecom towers. It comes from space.

Above him, hundreds of kilometres overhead, a small cluster of satellites belonging to Elon Musk’s Starlink network relays his data through the vacuum of orbit, bypassing the state entirely.

For governments built on control of information, this is no longer a technical inconvenience. It is a political nightmare. The image is quietly extraordinary. Not because of the technology — that story is already familiar — but because of what it represents: a private satellite network, owned by a US billionaire, now functioning as a parallel communications system inside a sovereign state that has deliberately tried to shut its citizens offline.

The Rise of an Unstoppable Network

Starlink, operated by Musk’s aerospace company SpaceX, has quietly become the most ambitious communications infrastructure ever built by a private individual.

As of late 2025, more than 9,000 Starlink satellites orbit Earth in low Earth orbit (LEO) (SpaceX / industry trackers, 2025). According to a report in Business Insider, the network serves over 9 million active users globally, and Starlink now operates in more than 155 countries and territories (Starlink coverage data, 2025).

It is the largest satellite constellation in human history, dwarfing every government system combined.

This is not merely a technology story. It is a power story.

Unlike traditional internet infrastructure — fibre cables, mobile towers, undersea routes — Starlink’s backbone exists in space. It does not cross borders. It does not require landing rights in the conventional sense. And, increasingly, it does not ask permission.

Iran: When the Sky Replaced the State

During successive waves of anti-government protests in Iran, authorities imposed sweeping internet shutdowns: mobile networks crippled, platforms blocked, bandwidth throttled to near zero. These tactics, used repeatedly since 2019, were designed to isolate protesters from each other and from the outside world.

They did not fully anticipate space-based internet.

By late 2024 and 2025, Starlink terminals had begun appearing clandestinely across Iranian cities, smuggled through borders or carried in by diaspora networks. Possession is illegal. Penalties are severe. Yet the demand has grown.

Because the network operates without local infrastructure, users can communicate with foreign media, upload protest footage in real time, coordinate securely beyond state surveillance, and maintain access even during nationwide blackouts.

The numbers are necessarily imprecise, but multiple independent estimates provide a sense of scale. Analysts at BNE IntelliNews estimated over 30,000 active Starlink users inside Iran by 2025.

Iranian activist networks suggest the number of physical terminals may be between 50,000 and 100,000, many shared across neighbourhoods. Earlier acknowledgements from Elon Musk confirmed that SpaceX had activated service coverage over Iran despite the lack of formal licensing.

This is what alarms governments most: the state no longer controls the kill switch.

www.edpublica.com
Infographics: created using NotebookLM. Concept & Analysis: EdPublica. Sources: International Telecommunication Union (ITU) reports; telecom shutdown analyses; SpaceX technical documentation; industry studies

Ukraine: When One Man Could Switch It Off

The power — and danger — of this new infrastructure became even clearer in Ukraine.

After Russia’s 2022 invasion, Starlink terminals were shipped in by the thousands to keep Ukrainian communications alive. Hospitals, emergency services, journalists, and frontline military units all relied on it. For a time, Starlink was celebrated as a technological shield for democracy.

Then came the uncomfortable reality.

Investigative reporting later revealed that Elon Musk personally intervened in decisions about where Starlink would and would not operate. In at least one documented case, coverage was restricted near Crimea, reportedly to prevent Ukrainian drone operations against Russian naval assets.

The implications were stark: A private individual, accountable to no electorate, had the power to influence the operational battlefield of a sovereign war. Governments noticed.

www.edpublica.com 1
Infographics: created using NotebookLM. Concept & Analysis: EdPublica. Sources: SpaceX disclosures, Business Insider, satellite trackers, Starlink coverage data

Digital Sovereignty in the Age of Orbit

For decades, states have understood sovereignty to include control of national telecom infrastructure, regulation of internet providers, the legal authority to impose shutdowns, the power to filter, censor, and surveil.

Starlink disrupts all of it.

Because, the satellites are in space, outside national jurisdiction. Access can be activated remotely by SpaceX, and the terminals can be smuggled like USB devices. Traffic can bypass domestic data laws entirely.

In effect, Starlink represents a parallel internet — one that states cannot fully regulate, inspect, or disable without extraordinary countermeasures such as satellite jamming or physical raids.

Authoritarian regimes view this as foreign interference. Democratic governments increasingly see it as a strategic vulnerability. Either way, the monopoly problem is the same: A single corporate network, controlled by one individual, increasingly functions as critical global infrastructure.

How the Technology Actually Works

The power of Starlink lies in its architecture. Traditional internet depends on fibre-optic cables across cities and oceans, local internet exchanges, mobile towers and ground stations, and centralised chokepoints.

Starlink bypasses most of this. Instead, it uses thousands of LEO satellites orbiting at ~550 km altitude, user terminals (“dishes”) that automatically track satellites overhead, inter-satellite laser links, allowing data to travel from satellite to satellite in space, and a limited number of ground gateways connecting the system to the wider internet.

This design creates resilience: No single tower to shut down, no local ISP to regulate, and no fibre line to cut.

For protesters, journalists, and dissidents, this is transformative. For governments, it is destabilising.

A Private Citizen vs the Rules of the Internet

The global internet was built around multistakeholder governance: National regulators, international bodies like the ITU, treaties governing spectrum use, and complex norms around cross-border infrastructure.

Starlink bypasses much of this through sheer technical dominance, and it has become a company that: owns the rockets, owns the satellites, owns the terminals, controls activation, controls pricing, controls coverage zones… effectively controls a layer of global communication.

This is why policymakers now speak openly of “digital sovereignty at risk”. It is no longer only China’s Great Firewall or Iran’s censorship model under scrutiny. It is the idea that global connectivity itself might be increasingly privatised, personalised, and politically unpredictable.

www.edpublica.com 2
Infographics: created using NotebookLM. Concept & Analysis: EdPublica. Sources: BNE IntelliNews, Reuters, investigative journalism, activist networks, policy reports

The Unanswered Question

Starlink undeniably delivers real benefits, it offers connectivity in disaster zones, internet access in rural Africa, emergency communications in war, educational access where infrastructure never existed.

But it also raises an uncomfortable, unresolved question: Should any individual — however visionary, however innovative — hold this much power over who gets access to the global flow of information?

Today, a protester in Tehran can speak to the world because Elon Musk chooses to allow it.

Tomorrow, that access could disappear just as easily — with a policy change, a commercial decision, or a geopolitical calculation.The sky has become infrastructure. Infrastructure has become power. And power, increasingly, belongs not to states — but to a handful of corporations.

There is another layer to this power calculus — and it is economic. While Starlink has been quietly enabled over countries such as Iran without formal approval, China remains a conspicuous exception. The reason is less technical than commercial. Elon Musk’s wider business empire, particularly Tesla, is deeply entangled with China’s economy. Shanghai hosts Tesla’s largest manufacturing facility in the world, responsible for more than half of the company’s global vehicle output, and Chinese consumers form one of Tesla’s most critical markets.

Chinese authorities, in turn, have made clear their hostility to uncontrolled foreign satellite internet, viewing it as a threat to state censorship and information control. Beijing has banned Starlink terminals, restricted their military use, and invested heavily in its own rival satellite constellation. For Musk, activating Starlink over China would almost certainly provoke regulatory retaliation that could jeopardise Tesla’s operations, supply chains, and market access. The result is an uncomfortable contradiction: the same technology framed as a tool of freedom in Iran or Ukraine is conspicuously absent over China — a reminder that even a supposedly borderless internet still bends to the gravitational pull of corporate interests and geopolitical power.

Continue Reading

Climate

Ancient lake sediments suggest India’s monsoon was far stronger during medieval warm period

New palaeoclimate evidence from central India suggests that the Indian Summer Monsoon was significantly stronger during the medieval warm period than previously believed

Published

on

Ancient lake sediments suggest India’s monsoon was far stronger during medieval warm period
Image credit: Ankit Rainloure/Pexels

India’s monsoon history may be more intense than previously assumed, according to new palaeoclimate evidence recovered from lake sediments in central India. Scientists analysing microscopic pollen preserved in Raja Rani Lake, in present-day Korba district of Chhattisgarh, have found signs of unusually strong and sustained Indian Summer Monsoon rainfall between about 1,060 and 1,725 CE.

The findings come from researchers at the Birbal Sahni Institute of Palaeosciences (BSIP), an autonomous institute under the Department of Science and Technology, and are based on a detailed reconstruction of vegetation and climate in India’s Core Monsoon Zone (CMZ)—the region that receives nearly 90 percent of the country’s annual rainfall from the Indian Summer Monsoon.

Reading climate history from pollen

Researchers extracted a 40-centimetre-long sediment core from Raja Rani Lake. These layers of mud record environmental changes spanning roughly the last 2,500 years. Embedded within them are fossil pollen grains released by plants that once grew around the lake.

By identifying and counting these grains—a method known as palynology—the team reconstructed past vegetation patterns and inferred climate conditions. Forest species that thrive in warm, humid environments point to periods of strong rainfall, while grasses and herbs are indicators of relatively drier phases.

According to the scientists, the pollen record from the medieval period shows a clear dominance of moist and dry tropical deciduous forest taxa. This points to a persistently warm and humid climate in central India, driven by a strong monsoon system, with no evidence of prolonged dry spells within the CMZ during that time.

Medieval Climate Anomaly linked to stronger monsoon

The period of intensified rainfall coincides with the Medieval Climate Anomaly (MCA), a globally recognised warm phase dated to roughly 1,060–1,725 CE. The study suggests that the strengthened Indian Summer Monsoon during this interval was shaped by a combination of global and regional drivers.

In a media statement, the researchers noted that La Niña–like conditions—typically associated with stronger Indian monsoons—may have prevailed during the MCA. Other contributing factors likely included a northward shift of the Inter Tropical Convergence Zone, positive temperature anomalies, higher sunspot numbers and increased solar activity.

Why this matters today

The Core Monsoon Zone is particularly sensitive to fluctuations in the Indian Summer Monsoon, making it a key region for understanding long-term hydroclimatic variability during the Late Holocene (also known as the Meghalayan Age). Scientists say insights from this period are crucial for contextualising present-day monsoon behaviour under ongoing climate change.

The BSIP team said high-resolution palaeoclimate records such as these can strengthen climate models used to simulate future rainfall patterns. Beyond academic interest, the findings have implications for water management, agriculture and climate-resilient policy planning in monsoon-dependent regions.

By revealing that central India once experienced a more intense and sustained monsoon than previously recognised, the study adds a deeper historical perspective to debates on how the Indian monsoon may respond to current and future warming.

Continue Reading

Society

Reliance to build India’s largest AI-ready data centre, positions Gujarat as global AI hub

As part of making Gujarat India’s artificial intelligence pioneer, in Jamnagar we are building India’s largest AI-ready data centre: Mukesh Ambani

Published

on

interview 3

Reliance Industries Limited, India’s largest business group, has announced plans to build the country’s largest artificial intelligence–ready data centre in Jamnagar, a coastal industrial city in the western Indian state of Gujarat, as part of a broader push to expand access to AI technologies at population scale.

The announcement was made by Mukesh Ambani, chairman and managing director of Reliance Industries, during the Vibrant Gujarat Regional Conference for the Kutch and Saurashtra region, a government-led investment and development forum focused on regional economic growth.

Ambani said the Jamnagar facility is being developed with a single objective: “Affordable AI for every Indian.” He positioned the project as a foundational investment in India’s digital infrastructure, aimed at enabling large-scale adoption of artificial intelligence across sectors including industry, services, education and public administration.

“As part of making Gujarat India’s artificial intelligence pioneer, in Jamnagar we are building India’s largest AI-ready data centre,” Ambani said, adding that the facility is intended to support widespread access to AI tools for individuals, enterprises and institutions.

Reliance also announced that its digital arm, Jio, will launch a “people-first intelligence platform,” designed to deliver AI services in multiple languages and across consumer devices. According to Ambani, the platform is being built in India for both domestic and international users, with a focus on everyday productivity and digital inclusion.

The AI initiative forms part of Reliance’s broader commitment to invest approximately Rs 7 trillion (about USD 85 billion) in Gujarat over the next five years. The company said the investments are expected to generate large-scale employment while positioning the region as a hub for emerging technologies.

The Jamnagar AI data centre is being developed alongside what Reliance describes as the world’s largest integrated clean energy manufacturing ecosystem, encompassing solar power, battery storage, green hydrogen and advanced materials. Ambani said the city, historically known as a major hub for oil refining and petrochemicals, is being re-engineered as a centre for next-generation energy and digital technologies.

The announcements were made in the presence of Indian Prime Minister Narendra Modi and Gujarat Chief Minister Bhupendra Patel, underscoring the alignment between public policy and private investment in India’s long-term technology and infrastructure strategy.

Continue Reading

Trending