Connect with us

Space & Physics

Why does superconductivity matter?

Dr. Saurabh Basu

Published

on

sup
A high-temperature (liquid nitrogen cooled) superconductor levitating above a permanent magnet (TU Dresden). Credit: Henry Mühlpfordt/Wikemedia Commons

Superconductivity was discovered by H. Kamerlingh Onnes on April 8, 1911, who was studying the resistance of solid Mercury (Hg) at cryogenic temperatures. Liquid helium was recently discovered at that time. At T = 4.2K, the resistance of Hg disappeared abruptly. This marked a transition to a new phase that was never seen before. The state is resistanceless, strongly diamagnetic, and denotes a new state of matter. K. Onnes sent two reports to KNAW (the local journal of the Netherlands), where he preferred calling the zero-resistance state ‘superconductivity’’.

There was another discovery that went unnoticed in the same experiment, which was the transition of superfluid Helium (He) at 2.2K, the so-called λ transition, below which He becomes a superfluid. However, we shall skip that discussion for now. A couple of years later, superconductivity was found in lead (Pb) at 7K. Much later, in 1941, Niobium Nitride was found to superconduct below 16 K. The burning question in those days was: what would the conductivity or resistivity of metals be at a very low temperature?

The reason behind such a question is Lord Kelvin’s suggestion that for metals, initially the resistivity decreases with falling temperature and finally climbs to infinity at zero Kelvin because electrons’ mobility becomes zero at 0 K, yielding zero conductivity and hence infinite resistivity. Kamerlingh Onnes and his assistant Jacob Clay studied the resistance of gold (Au) and platinum (Pt) down to T = 14K. There was a linear decrease in resistance until 14 K; however, lower temperatures cannot be accessed owing to the unavailability of liquid He, which eventually happened in 1908.

Super Condu
Heike Kamerlingh Onnes (right), the discoverer of superconductivity. Paul Ehrenfest, Hendrik Lorentz, Niels Bohr stand to his left.

In fact, the experiment with Au and Pt was repeated after 1908. For Pt, the resistivity became constant after 4.2K, while Au is found to superconduct at very low temperatures. Thus, Lord Kelvin’s notion about infinite resistivity at very low temperatures was incorrect. Onnes had found that at 3 K (below the transition), the normalised resistance is about 10−7. Above 4.2 K, the resistivity starts appearing again. The transition is too sharp and falls abruptly to zero within a temperature window of 10−4 K.

Perfect conductors, superconductors, and magnets

All superconductors are normal metals above the transition temperature. If we ask in the periodic table where most of the superconductors are located, the answer throws some surprises. The good metals are rarely superconducting. The examples are Ag, Au, Cu, Cs, etc., which have transition temperatures of the order of ∼ 0.1K, while the bad metals, such as niobium alloys, copper oxides, and 1 MgB2, have relatively larger transition temperatures. Thus, bad metals are, in general, good superconductors. An important quantity in this regard is the mean free path of the electrons. The mean free path is of the order of a few A0 for metals (above Tc), while for good metals (or the bad superconductors), it is usually a few hundred of A0. Whereas for the bad metals (good superconductors), it is still small as the electrons are strongly coupled to phonons. The orbital overlap is large in a superconductor. In good metals, the orbital overlap is small, and often they become good magnets. In the periodic table, transition elements such as the 3D series elements, namely Al, Bi, Cd, Ga, etc., become good superconductors, while Cr, Mn, and Fe are bad superconductors and in fact form good magnets. For all of them, that is, whether they are superconductors or magnets, there is a large density of states at the Fermi level. So, a lot of electronic states are necessary for the electrons in these systems to be able to condense into a superconducting state (or even a magnetic state). The nature of the electronic wave function determines whether they develop superconducting order or magnetic order. For example, electronic wavefunctions have a large spatial extent for superconductors, while they are short-range for magnets.

Meissner effect

The near-complete expulsion of the magnetic field from a superconducting specimen is called the Meissner effect. In the presence of a magnetic field, the current loops at the periphery will be generated so as to block the entry of the external field inside the specimen. If a magnetic field is allowed within a superconductor, then, by Ampere’s law, there will be normal current within the sample. However, there is no normal current inside the specimen. Thus, there can’t be any magnetic field. For this reason, superconductors are known as perfect diamagnets with very large diamagnetic susceptibility. Even the best-known diamagnets (which are non-superconductors) have magnetic susceptibilities of the order of 10−5. Thus, the diamagnetic property can be considered a distinct property of superconductors compared to zero electrical resistance.

A typical experiment demonstrating the Meissner effect can be thought of as follows: Take a superconducting sample (T < Tc), sprinkle iron filings around the sample, and switch on the magnetic field. The iron filings are going to line up in concentric circles around the specimen. This implies the expulsion of the flux lines outside the sample, which makes the filings line up.

Distinction between perfect conductors and superconductors

The distinction between a perfect conductor and a superconductor is brought about by magnetic field-cooled (FC) and zero-field-cooled (ZFc) cases, as shown below in Fig. 1.

fig1

In the absence of an external magnetic field, temperature is lowered for both the metal and the superconductor in their metallic states from T > Tc to T < Tc (see left panel for both in Fig. 1). Hence, a magnetic field is applied, which eventually gets expelled owing to the Meissner effect. The field has finally been withdrawn. However, if cooling is done in the presence of an external field, after the field is withdrawn, the flux lines get trapped for a perfect conductor; however, the superconductor is left with no memory of an applied field, a situation similar to what happens in the zero-field cooling case. So, superconductors have no memory, while perfect conductors have memory.

Microscopic considerations: BCS theory

The first microscopic theory of superconductivity was proposed by Berdeen, Cooper, and Schrieffer (BCS) in 1957, which earned them a Nobel Prize in 1972. The underlying assumption was that an attractive interaction between the electrons is possible, which is mediated via phonons. Thus, electrons form bound pairs under certain conditions, such as (i) two electrons in the vicinity of the filled Fermi Sea within an energy range ¯hωD (set by the phonons or lattice). (ii) The presence of phonons or the underlying lattice is confirmed by the isotope effect experiment, which confirms that the transition temperature is proportional to the mass of ions. Since the Debye frequency depends on the ionic mass, it implies that the lattice must be involved. 3 A small calculation yields that an attractive interaction is possible in a narrow range of energy. This attractive interaction causes the system to be unstable, and a long-range order develops via symmetry breaking. In a book by one of the discoverers, namely, Schrieffer, he described an analogy between a dancing floor comprising couples, dancing one with any other couple, and being completely oblivious to any other couple present in the room. The couples, while dancing, drift from one end of the room to another but do not collide with each other. This implies less dissipation in the transport of a superconductor. The BCS theory explained most of the features of the superconductors known at that time, such as (i) the discontinuity of the specific heat at the transition temperature, Tc. (ii) Involvement of the lattice via the isotope effect. (iii) Estimation of Tc and the energy gap. The value of Tc and the gap are confirmed by tunnelling experiments across metal-superconductor (M-S) or metal-insulator-superconductor (MIS) types of junctions. Giaever was awarded the Nobel Prize in 1973 for his work on these experiments. (iv) The Meissner effect can be explained within a linear response regime. (v) Temperature dependence of the energy gap, confirming gradual vanishing, which confirms a second-order phase transition. Most of the features of conventional superconductors can be explained using BCS theory. Another salient feature of the theory is that it is non-perturbative. There is no small parameter in the problem. The calculations were done with a variational theory where the energy is minimised with respect to some free parameters of the variational wavefunction, known as the BCS wavefunction.

Unconventional Superconductors: High-Tc Cuprates

This is a class of superconductors where the two-dimensional copper oxide planes play the main role, and superconductivity occurs in these planes. Doping these planes with mobile carriers makes the system unstable towards superconducting correlations. At zero doping, the system is an antiferromagnetic insulator (see Fig. 2). With about 15% to 20% doping with foreign elements, such as strontium (Sr), etc. (for example, in La2−xSrxCuO4), the system turns superconductivity. There are two things that are surprising in this regard. (i) The proximity of the insulating state to the superconducting state; (ii) For the system initially in the superconducting state, as the temperature is raised, instead of going into a metallic state, it shows several unfamiliar features that are very unlike the known Fermi liquid characteristics. It is called a strange metal.

fig2

In fact, there are some signatures of pre-formed pairs in the ‘so-called’ metallic state, known as the pseudo gap phase. Since the starting point from which one should build a theory is missing, a complete understanding of the mechanism leading to the phenomenon cannot be understood. It remained a theoretical riddle.

Dr. Saurabh Basu is Professor at Department of Physics, Indian Institute of Technology (IIT) Guwahati. He works in the area of correlated electron systems with the main focus on bosonic superfluidity in (optical) lattices.

Space & Physics

Physicists Capture ‘Wakes’ Left by Quarks in the Universe’s First Liquid

Scientists at CERN’s Large Hadron Collider have observed, for the first time, fluid-like wakes created by quarks moving through quark–gluon plasma, offering direct evidence that the universe’s earliest matter behaved like a liquid rather than a cloud of free particles.

Published

on

Physicists Capture ‘Wakes’ Left by Quarks in the Universe’s First Liquid
Image credit: Jose-Luis Olivares, MIT

Physicists working at the CERN(The European Organization for Nuclear Research) have reported the first direct experimental evidence that quark–gluon plasma—the primordial matter that filled the universe moments after the Big Bang—behaves like a true liquid.

Using heavy-ion collisions at the Large Hadron Collider, researchers recreated the extreme conditions of the early universe and observed that quarks moving through this plasma generate wake-like patterns, similar to ripples trailing a duck across water.

The study, led by physicists from the Massachusetts Institute of Technology, shows that the quark–gluon plasma responds collectively, flowing and splashing rather than scattering randomly.

“It has been a long debate in our field, on whether the plasma should respond to a quark,” said Yen-Jie Lee in a media statement. “Now we see the plasma is incredibly dense, such that it is able to slow down a quark, and produces splashes and swirls like a liquid. So quark-gluon plasma really is a primordial soup.”

Quark–gluon plasma is believed to be the first liquid to have existed in the universe and the hottest ever observed, reaching temperatures of several trillion degrees Celsius. It is also considered a near-perfect liquid, flowing with almost no resistance.

To isolate the wake produced by a single quark, the team developed a new experimental technique. Instead of tracking pairs of quarks and antiquarks—whose effects can overlap—they identified rare collision events that produced a single quark traveling in the opposite direction of a Z boson. Because a Z boson interacts weakly with its surroundings, it acts as a clean marker, allowing scientists to attribute any observed plasma ripples solely to the quark.

“We have figured out a new technique that allows us to see the effects of a single quark in the QGP, through a different pair of particles,” Lee said.

Analysing data from around 13 billion heavy-ion collisions, the researchers identified roughly 2,000 Z-boson events. In these cases, they consistently observed fluid-like swirls in the plasma opposite to the Z boson’s direction—clear signatures of quark-induced wakes.

The results align with theoretical predictions made by MIT physicist Krishna Rajagopal, whose hybrid model suggested that quarks should drag plasma along as they move through it.

“This is something that many of us have argued must be there for a good many years, and that many experiments have looked for,” Rajagopal said.

“We’ve gained the first direct evidence that the quark indeed drags more plasma with it as it travels,” Lee added. “This will enable us to study the properties and behavior of this exotic fluid in unprecedented detail.”

The research was carried out by members of the CMS Collaboration using the Compact Muon Solenoid detector at CERN. The open-access study has been published in the journal Physics Letters B.

Continue Reading

Space & Physics

Why Jupiter Has Eight Polar Storms — and Saturn Only One: MIT Study Offers New Clues

Two giant planets, made of the same elements, display radically different storms at their poles. New research from MIT now suggests that the key to this cosmic mystery lies not in the skies, but deep inside Jupiter and Saturn themselves.

Published

on

Why Jupiter Has Eight Polar Storms — and Saturn Only One: MIT Study Offers New Clues
Image Credit: NASA/JPL-Caltech/SwRI/ASI/INAF/JIRAM

For decades, spacecraft images of Jupiter and Saturn have puzzled planetary scientists. Despite being similar in size and composition, the two gas giants display dramatically different weather systems at their poles. Jupiter hosts a striking formation: a central polar vortex encircled by eight massive storms, resembling a rotating crown. Saturn, by contrast, is capped by a single enormous cyclone, shaped like a near-perfect hexagon.

Now, researchers at the Massachusetts Institute of Technology believe they have identified a key reason behind this cosmic contrast — and the answer may lie deep beneath the planets’ cloud tops.

In a new study published in the Proceedings of the National Academy of Sciences, the MIT team suggests that the structure of a planet’s interior — specifically, how “soft” or “hard” the base of a vortex is — determines whether polar storms merge into one giant system or remain as multiple smaller vortices.

“Our study shows that, depending on the interior properties and the softness of the bottom of the vortex, this will influence the kind of fluid pattern you observe at the surface,” says study author Wanying Kang, assistant professor in MIT’s Department of Earth, Atmospheric and Planetary Sciences (EAPS) in a media release issued by the institute. “I don’t think anyone’s made this connection between the surface fluid pattern and the interior properties of these planets. One possible scenario could be that Saturn has a harder bottom than Jupiter.”

A long-standing planetary mystery

The contrast has been visible for years thanks to two landmark NASA missions. The Juno spacecraft, which has been orbiting Jupiter since 2016, revealed a dramatic polar arrangement of swirling storms, each roughly 3,000 miles wide — nearly half the diameter of Earth. Cassini, which orbited Saturn for 13 years before its mission ended in 2017, documented the planet’s iconic hexagonal polar vortex, stretching nearly 18,000 miles across.

“People have spent a lot of time deciphering the differences between Jupiter and Saturn,” says Jiaru Shi, the study’s first author and an MIT graduate student. “The planets are about the same size and are both made mostly of hydrogen and helium. It’s unclear why their polar vortices are so different.”

Simulating storms on gas giants

To tackle the question, the researchers turned to computer simulations. They created a two-dimensional model of atmospheric flow designed to mimic how storms might evolve on a rapidly rotating gas giant.

While real planetary vortices are three-dimensional, the team argued that Jupiter’s and Saturn’s fast spin simplifies the physics. “In a fast-rotating system, fluid motion tends to be uniform along the rotating axis,” Kang explains. “So, we were motivated by this idea that we can reduce a 3D dynamical problem to a 2D problem because the fluid pattern does not change in 3D. This makes the problem hundreds of times faster and cheaper to simulate and study.”

The model allowed the scientists to test thousands of possible planetary conditions, varying factors such as rotation rate, internal heating, planet size and — crucially — the density of material beneath the vortices. Each simulation began with random chaotic motion and tracked how storms evolved over time.

The outcomes consistently fell into two categories: either the system developed one dominant polar vortex, like Saturn, or several coexisting vortices, like Jupiter.

The decisive factor turned out to be how much a vortex could grow before being constrained by the properties of the layers beneath it.

When the lower layers were made of softer, lighter material, individual vortices could not expand indefinitely. Instead, they stabilized at smaller sizes, allowing multiple storms to coexist at the pole. This matches what scientists observe on Jupiter.

But when the simulated vortex base was denser and more rigid, vortices were able to grow larger and eventually merge. The end result was a single, planet-scale storm — remarkably similar to Saturn’s massive polar cyclone.

“This equation has been used in many contexts, including to model midlatitude cyclones on Earth,” Kang says. “We adapted the equation to the polar regions of Jupiter and Saturn.”

The findings suggest that Saturn’s interior may contain heavier elements or more condensed material than Jupiter’s, giving its atmospheric vortices a firmer foundation to build upon.

“What we see from the surface, the fluid pattern on Jupiter and Saturn, may tell us something about the interior, like how soft the bottom is,” Shi says. “And that is important because maybe beneath Saturn’s surface, the interior is more metal-enriched and has more condensable material which allows it to provide stronger stratification than Jupiter. This would add to our understanding of these gas giants.”

Reading the interiors from the skies

Planetary scientists have long struggled to infer the internal structures of gas giants, where pressures and temperatures are far beyond what can be reproduced in laboratories. This new work offers a rare bridge between visible atmospheric patterns and hidden planetary composition.

Beyond explaining two of the Solar System’s most visually striking storms, the research could shape how scientists interpret observations of distant exoplanets as well — worlds where atmospheric patterns might be the only clues to what lies within.

For now, Jupiter’s swirling crown of storms and Saturn’s solitary hexagon may be doing more than decorating the poles of two distant giants. They may be quietly revealing the deep, unseen architecture of the planets themselves.

Continue Reading

Space & Physics

When Quantum Rules Break: How Magnetism and Superconductivity May Finally Coexist

A new theoretical breakthrough from MIT suggests that exotic quantum particles known as anyons could reconcile a long-standing paradox in physics, opening a path to an entirely new form of superconductivity.

Published

on

When Quantum Rules Break: How Magnetism and Superconductivity May Finally Coexist
Image credit: Pawel Czerwinski/UnSplash

For decades, physicists believed that superconductivity and magnetism were fundamentally incompatible. Superconductivity is fragile: even a weak magnetic field can disrupt the delicate pairing of electrons that allows electrical current to flow without resistance. Magnetism, by its very nature, should destroy superconductivity.

And yet, in the past year, two independent experiments upended this assumption.

In two different quantum materials, researchers observed something that should not have existed at all: superconductivity and magnetism appearing side by side. One experiment involved rhombohedral graphene, while another focused on the layered crystal molybdenum ditelluride (MoTe₂). The findings stunned the condensed-matter physics community and reopened a fundamental question—how is this even possible?

Now, a new theoretical study from physicists at the Massachusetts Institute of Technology offers a compelling explanation. Writing in the Proceedings of the National Academy of Sciences, the researchers propose that under the right conditions, electrons in certain magnetic materials can split into fractional quasiparticles known as anyons—and that these anyons, rather than electrons, may be responsible for superconductivity.

If confirmed, the work would introduce a completely new form of superconductivity, one that survives magnetism and is driven by exotic quantum particles instead of ordinary electrons.

“Many more experiments are needed before one can declare victory,” said Senthil Todadri, William and Emma Rogers Professor of Physics at MIT, in a media statement. “But this theory is very promising and shows that there can be new ways in which the phenomenon of superconductivity can arise.”

A Quantum Contradiction Comes Alive

Superconductivity and magnetism are collective quantum states born from the behavior of electrons. In magnets, electrons align their spins, producing a macroscopic magnetic field. In superconductors, electrons pair up into so-called Cooper pairs, allowing current to flow without energy loss.

For decades, textbooks taught that the two states repel each other. But earlier this year, that belief cracked.

At MIT, physicist Long Ju and colleagues reported superconductivity coexisting with magnetism in rhombohedral graphene—four to five stacked graphene layers arranged in a specific crystal structure.

“It was electrifying,” Todadri recalled in a media statement. “It set the place alive. And it introduced more questions as to how this could be possible.”

Soon after, another team reported a similar duality in MoTe₂. Crucially, MoTe₂ also exhibits an exotic quantum phenomenon known as the fractional quantum anomalous Hall (FQAH) effect, in which electrons behave as if they split into fractions of themselves.

Those fractional entities are anyons.

Meet the Anyons: Where “Anything Goes”

Anyons occupy a strange middle ground in the quantum world. Unlike bosons, which happily clump together, or fermions, which avoid one another, anyons follow their own rules—and exist only in two-dimensional systems.

First predicted in the 1980s and named by MIT physicist Frank Wilczek, anyons earned their name as a playful nod to their unconventional behavior: anything goes.

Decades ago, theorists speculated that anyons might be able to superconduct in magnetic environments. But because superconductivity and magnetism were believed to be mutually exclusive, the idea was largely abandoned.

The recent MoTe₂ experiments changed that calculus.

“People knew that magnetism was usually needed to get anyons to superconduct,” Todadri said in a media statement. “But superconductivity and magnetism typically do not occur together. So then they discarded the idea.”

Now, Todadri and MIT graduate student Zhengyan Darius Shi, co-author of the study, revisited the old theory—armed with new experimental clues.

Using quantum field theory, the team modeled how electrons fractionalize in MoTe₂ under FQAH conditions. Their calculations revealed that electrons can split into anyons carrying either one-third or two-thirds of an electron’s charge.

That distinction turned out to be critical.

Anyons are notoriously “frustrated” particles—quantum effects prevent them from moving freely together.

“When you have anyons in the system, what happens is each anyon may try to move, but it’s frustrated by the presence of other anyons,” Todadri explained in a media statement. “This frustration happens even if the anyons are extremely far away from each other.”

But when the system is dominated by two-thirds-charge anyons, the frustration breaks down. Under these conditions, the anyons begin to move collectively—forming a supercurrent without resistance.

“These anyons break out of their frustration and can move without friction,” Todadri said. “The amazing thing is, this is an entirely different mechanism by which a superconductor can form.”

The team also predicts a distinctive experimental signature: swirling supercurrents that spontaneously emerge in random regions of the material—unlike anything seen in conventional superconductors.

Why This Matters Beyond Physics

If experiments confirm superconducting anyons, the implications could extend far beyond fundamental physics.

Because anyons are inherently robust against environmental disturbances, they are considered prime candidates for building stable quantum bits, or qubits—the foundation of future quantum computers.

“These theoretical ideas, if they pan out, could make this dream one tiny step within reach,” Todadri said.

More broadly, the work hints at an entirely new category of matter.

“If our anyon-based explanation is what is happening in MoTe₂, it opens the door to the study of a new kind of quantum matter which may be called ‘anyonic quantum matter,’” Todadri said. “This will be a new chapter in quantum physics.”

For now, the theory awaits experimental confirmation. But one thing is already clear: a rule long thought unbreakable in quantum physics may no longer hold—and the quantum world just became a little stranger, and far more exciting.

Continue Reading

Trending