Connect with us

Society

Why AI will be the Catalyst for a new era of productivity growth

Published

on

car
Image by Lin Tong from Pixabay

The dawn of the artificial intelligence (AI) era is often compared to transformative technological advancements such as the steam engine, electricity, and the personal computer. These innovations reshaped industries and daily life, and AI is poised to make an equally revolutionary impact, particularly on global productivity. While the effects of AI are still unfolding, experts believe that its ability to significantly boost productivity could happen in record time—just seven years, compared to decades for earlier technological revolutions.

This optimism comes at a critical juncture in the global economy. Post-pandemic, many countries are grappling with stagnating growth, rising inflation, and mounting debt, alongside the fundamental issue of declining productivity. In fact, several international agencies have noted that the productivity decline following the global economic downturn is unprecedented in recent history. Yet, AI is emerging as a way of hope, offering the potential not only to reverse this trend but to propel productivity to unprecedented heights.

the new era of productivity

The Economic Impact of AI: A Long-Awaited Leap

The global economy has struggled with low productivity growth for over a decade. For example, U.S. labour productivity growth averaged just 1.68% from 1998 to 2007, a period during which significant technological innovations like the internet and personal computers began to take root. But since 2010, productivity growth has fallen further, dipping to 0.38% between 2010 and 2019.

Some forecasts suggest that generative AI alone could add between $2.6 trillion and $4.4 trillion to the global economy

In this environment, AI is seen as the key to unlocking a new wave of economic efficiency. According to recent reports from the International Monetary Fund (IMF), AI technologies are expected to drive a substantial increase in global productivity. Some forecasts suggest that generative AI alone could add between $2.6 trillion and $4.4 trillion to the global economy.

To understand the potential of AI in the context of productivity growth, it’s useful to compare it to previous technological breakthroughs. The steam engine, for example, took about 60 years to fully transform productivity in manufacturing. Personal computers accelerated productivity growth over 15 years. By contrast, AI is expected to have a profound impact on productivity within just seven years.

Generative AI and Its Promising Future

Generative AI is a form of artificial intelligence that creates new content—whether it’s text, images, or even software code—based on patterns learned from large datasets. The speed with which generative AI is advancing is extraordinary. ChatGPT, released in November 2022, was quickly followed by a more advanced version, GPT-4, and other breakthroughs have appeared throughout 2023. This technology is expanding rapidly, with the capability to process tens of thousands of words in a minute, creating a powerful tool for automating complex tasks.

The applications of generative AI are vast and varied. In the business world, AI systems are already transforming industries like customer operations, marketing, software engineering, and research and development. The banking sector, for example, is projected to see an annual revenue increase of $200 billion to $340 billion through the adoption of AI. The retail and consumer goods sectors could see similar gains, potentially adding up to $600 billion annually.

AI’s potential to automate routine tasks could also free up significant amounts of time for human workers. Studies indicate that generative AI could automate between 60% and 70% of the tasks currently performed by employees, dramatically increasing efficiency. For knowledge-based workers, particularly in high-wage and high-skill sectors, AI is poised to amplify productivity by reducing time spent on routine tasks, such as data analysis, customer service, and administrative work.

Transforming Labour Markets: A Double-Edged Sword

However, the rapid rise of AI is not without its challenges, particularly when it comes to labor markets. Many fear that the widespread adoption of AI could lead to massive job displacement, especially in developed countries where white-collar jobs are more susceptible to automation. According to the IMF, while 30% of U.S. jobs may be at risk of automation by AI, only 13% of jobs in India are likely to be affected, reflecting the differing technological capabilities and labor market structures across the globe.

At the same time, AI’s integration into the economy is expected to create new job opportunities, especially in fields that require advanced technical skills, such as AI development, data science, and cybersecurity. This pattern mirrors historical trends: when previous technological revolutions disrupted the labor market, they also created entirely new industries and job categories. A recent study by MIT found that 60% of the jobs in America today did not exist in 1940, highlighting the constant evolution of the labor market in response to technological innovation.

AI’s Role in Healthcare: Beyond Productivity

AI’s potential extends far beyond traditional sectors like manufacturing or finance. The healthcare industry stands to benefit greatly from AI’s ability to analyze vast amounts of medical data quickly and accurately. For example, AI systems can assist doctors by analyzing scan reports, identifying patterns, and recommending treatment protocols. AI can also reduce the burden of administrative tasks, such as summarizing doctors’ notes and processing insurance claims, thereby improving productivity in healthcare settings while also reducing costs.

Generative AI is now widely recognized as a general-purpose technology (GPT), similar to electricity or the personal computer

Such advancements could lead to significant improvements in healthcare delivery, making it more efficient and cost-effective. This would not only improve outcomes for patients but also contribute to economic growth by lowering healthcare costs for both consumers and governments.

The Path Forward

Generative AI is now widely recognized as a general-purpose technology (GPT), similar to electricity or the personal computer. These technologies have historically contributed to broad-based productivity growth across multiple sectors. The key to AI’s success as a GPT lies in its ability to integrate seamlessly with existing technologies and applications across various industries, driving continuous innovation and productivity gains.

The widespread adoption of AI in industries like logistics, manufacturing, education, and even creative arts has the potential to revolutionize how businesses operate and how workers contribute. As businesses continue to integrate AI into their processes, the resulting efficiencies will likely lead to increased competition, lower prices, and higher wages for workers in industries that embrace these changes.

AI’s transformative potential for global productivity cannot be overstated. Just as the steam engine and personal computers reshaped industries and economies, AI is positioned to trigger an unprecedented leap in productivity across nearly every sector. While challenges related to job displacement and economic inequality remain, the promise of a future in which AI drives substantial economic growth is undeniably exciting.

As AI continues to evolve, it is crucial for businesses, policymakers, and workers to embrace this change, adapting to new technologies and fostering an environment that allows AI to reach its full potential. The future of productivity is unfolding before us, and AI will be at the centre of this revolution.

Technology

From Tehran Rooftops To Orbit: How Elon Musk Is Reshaping Who Controls The Internet

How Starlink turned the sky into a battleground for digital power — and why one private network now challenges the sovereignty of states

Dipin Damodharan

Published

on

From Tehran Rooftops To Orbit: How Starlink Is Reshaping Who Controls The Internet
AI-assisted illustration | S James / EdPublica

On a rooftop in northern Tehran, long after midnight, a young engineering student adjusts a flat white dish toward the sky. The city around him is digitally dark—mobile data throttled, social media blocked, foreign websites unreachable. Yet inside his apartment, a laptop screen glows with Telegram messages, BBC livestreams, and uncensored access to the outside world.

Scenes like this have appeared repeatedly in footage from Iran’s unrest broadcast by international news channels.

But there’s a catch. The connection does not travel through Iranian cables or telecom towers. It comes from space.

Above him, hundreds of kilometres overhead, a small cluster of satellites belonging to Elon Musk’s Starlink network relays his data through the vacuum of orbit, bypassing the state entirely.

For governments built on control of information, this is no longer a technical inconvenience. It is a political nightmare. The image is quietly extraordinary. Not because of the technology — that story is already familiar — but because of what it represents: a private satellite network, owned by a US billionaire, now functioning as a parallel communications system inside a sovereign state that has deliberately tried to shut its citizens offline.

The Rise of an Unstoppable Network

Starlink, operated by Musk’s aerospace company SpaceX, has quietly become the most ambitious communications infrastructure ever built by a private individual.

As of late 2025, more than 9,000 Starlink satellites orbit Earth in low Earth orbit (LEO) (SpaceX / industry trackers, 2025). According to a report in Business Insider, the network serves over 9 million active users globally, and Starlink now operates in more than 155 countries and territories (Starlink coverage data, 2025).

It is the largest satellite constellation in human history, dwarfing every government system combined.

This is not merely a technology story. It is a power story.

Unlike traditional internet infrastructure — fibre cables, mobile towers, undersea routes — Starlink’s backbone exists in space. It does not cross borders. It does not require landing rights in the conventional sense. And, increasingly, it does not ask permission.

Iran: When the Sky Replaced the State

During successive waves of anti-government protests in Iran, authorities imposed sweeping internet shutdowns: mobile networks crippled, platforms blocked, bandwidth throttled to near zero. These tactics, used repeatedly since 2019, were designed to isolate protesters from each other and from the outside world.

They did not fully anticipate space-based internet.

By late 2024 and 2025, Starlink terminals had begun appearing clandestinely across Iranian cities, smuggled through borders or carried in by diaspora networks. Possession is illegal. Penalties are severe. Yet the demand has grown.

Because the network operates without local infrastructure, users can communicate with foreign media, upload protest footage in real time, coordinate securely beyond state surveillance, and maintain access even during nationwide blackouts.

The numbers are necessarily imprecise, but multiple independent estimates provide a sense of scale. Analysts at BNE IntelliNews estimated over 30,000 active Starlink users inside Iran by 2025.

Iranian activist networks suggest the number of physical terminals may be between 50,000 and 100,000, many shared across neighbourhoods. Earlier acknowledgements from Elon Musk confirmed that SpaceX had activated service coverage over Iran despite the lack of formal licensing.

This is what alarms governments most: the state no longer controls the kill switch.

www.edpublica.com
Infographics: created using NotebookLM. Concept & Analysis: EdPublica. Sources: International Telecommunication Union (ITU) reports; telecom shutdown analyses; SpaceX technical documentation; industry studies

Ukraine: When One Man Could Switch It Off

The power — and danger — of this new infrastructure became even clearer in Ukraine.

After Russia’s 2022 invasion, Starlink terminals were shipped in by the thousands to keep Ukrainian communications alive. Hospitals, emergency services, journalists, and frontline military units all relied on it. For a time, Starlink was celebrated as a technological shield for democracy.

Then came the uncomfortable reality.

Investigative reporting later revealed that Elon Musk personally intervened in decisions about where Starlink would and would not operate. In at least one documented case, coverage was restricted near Crimea, reportedly to prevent Ukrainian drone operations against Russian naval assets.

The implications were stark: A private individual, accountable to no electorate, had the power to influence the operational battlefield of a sovereign war. Governments noticed.

www.edpublica.com 1
Infographics: created using NotebookLM. Concept & Analysis: EdPublica. Sources: SpaceX disclosures, Business Insider, satellite trackers, Starlink coverage data

Digital Sovereignty in the Age of Orbit

For decades, states have understood sovereignty to include control of national telecom infrastructure, regulation of internet providers, the legal authority to impose shutdowns, the power to filter, censor, and surveil.

Starlink disrupts all of it.

Because, the satellites are in space, outside national jurisdiction. Access can be activated remotely by SpaceX, and the terminals can be smuggled like USB devices. Traffic can bypass domestic data laws entirely.

In effect, Starlink represents a parallel internet — one that states cannot fully regulate, inspect, or disable without extraordinary countermeasures such as satellite jamming or physical raids.

Authoritarian regimes view this as foreign interference. Democratic governments increasingly see it as a strategic vulnerability. Either way, the monopoly problem is the same: A single corporate network, controlled by one individual, increasingly functions as critical global infrastructure.

How the Technology Actually Works

The power of Starlink lies in its architecture. Traditional internet depends on fibre-optic cables across cities and oceans, local internet exchanges, mobile towers and ground stations, and centralised chokepoints.

Starlink bypasses most of this. Instead, it uses thousands of LEO satellites orbiting at ~550 km altitude, user terminals (“dishes”) that automatically track satellites overhead, inter-satellite laser links, allowing data to travel from satellite to satellite in space, and a limited number of ground gateways connecting the system to the wider internet.

This design creates resilience: No single tower to shut down, no local ISP to regulate, and no fibre line to cut.

For protesters, journalists, and dissidents, this is transformative. For governments, it is destabilising.

A Private Citizen vs the Rules of the Internet

The global internet was built around multistakeholder governance: National regulators, international bodies like the ITU, treaties governing spectrum use, and complex norms around cross-border infrastructure.

Starlink bypasses much of this through sheer technical dominance, and it has become a company that: owns the rockets, owns the satellites, owns the terminals, controls activation, controls pricing, controls coverage zones… effectively controls a layer of global communication.

This is why policymakers now speak openly of “digital sovereignty at risk”. It is no longer only China’s Great Firewall or Iran’s censorship model under scrutiny. It is the idea that global connectivity itself might be increasingly privatised, personalised, and politically unpredictable.

www.edpublica.com 2
Infographics: created using NotebookLM. Concept & Analysis: EdPublica. Sources: BNE IntelliNews, Reuters, investigative journalism, activist networks, policy reports

The Unanswered Question

Starlink undeniably delivers real benefits, it offers connectivity in disaster zones, internet access in rural Africa, emergency communications in war, educational access where infrastructure never existed.

But it also raises an uncomfortable, unresolved question: Should any individual — however visionary, however innovative — hold this much power over who gets access to the global flow of information?

Today, a protester in Tehran can speak to the world because Elon Musk chooses to allow it.

Tomorrow, that access could disappear just as easily — with a policy change, a commercial decision, or a geopolitical calculation.The sky has become infrastructure. Infrastructure has become power. And power, increasingly, belongs not to states — but to a handful of corporations.

There is another layer to this power calculus — and it is economic. While Starlink has been quietly enabled over countries such as Iran without formal approval, China remains a conspicuous exception. The reason is less technical than commercial. Elon Musk’s wider business empire, particularly Tesla, is deeply entangled with China’s economy. Shanghai hosts Tesla’s largest manufacturing facility in the world, responsible for more than half of the company’s global vehicle output, and Chinese consumers form one of Tesla’s most critical markets.

Chinese authorities, in turn, have made clear their hostility to uncontrolled foreign satellite internet, viewing it as a threat to state censorship and information control. Beijing has banned Starlink terminals, restricted their military use, and invested heavily in its own rival satellite constellation. For Musk, activating Starlink over China would almost certainly provoke regulatory retaliation that could jeopardise Tesla’s operations, supply chains, and market access. The result is an uncomfortable contradiction: the same technology framed as a tool of freedom in Iran or Ukraine is conspicuously absent over China — a reminder that even a supposedly borderless internet still bends to the gravitational pull of corporate interests and geopolitical power.

Continue Reading

Climate

Ancient lake sediments suggest India’s monsoon was far stronger during medieval warm period

New palaeoclimate evidence from central India suggests that the Indian Summer Monsoon was significantly stronger during the medieval warm period than previously believed

Published

on

Ancient lake sediments suggest India’s monsoon was far stronger during medieval warm period
Image credit: Ankit Rainloure/Pexels

India’s monsoon history may be more intense than previously assumed, according to new palaeoclimate evidence recovered from lake sediments in central India. Scientists analysing microscopic pollen preserved in Raja Rani Lake, in present-day Korba district of Chhattisgarh, have found signs of unusually strong and sustained Indian Summer Monsoon rainfall between about 1,060 and 1,725 CE.

The findings come from researchers at the Birbal Sahni Institute of Palaeosciences (BSIP), an autonomous institute under the Department of Science and Technology, and are based on a detailed reconstruction of vegetation and climate in India’s Core Monsoon Zone (CMZ)—the region that receives nearly 90 percent of the country’s annual rainfall from the Indian Summer Monsoon.

Reading climate history from pollen

Researchers extracted a 40-centimetre-long sediment core from Raja Rani Lake. These layers of mud record environmental changes spanning roughly the last 2,500 years. Embedded within them are fossil pollen grains released by plants that once grew around the lake.

By identifying and counting these grains—a method known as palynology—the team reconstructed past vegetation patterns and inferred climate conditions. Forest species that thrive in warm, humid environments point to periods of strong rainfall, while grasses and herbs are indicators of relatively drier phases.

According to the scientists, the pollen record from the medieval period shows a clear dominance of moist and dry tropical deciduous forest taxa. This points to a persistently warm and humid climate in central India, driven by a strong monsoon system, with no evidence of prolonged dry spells within the CMZ during that time.

Medieval Climate Anomaly linked to stronger monsoon

The period of intensified rainfall coincides with the Medieval Climate Anomaly (MCA), a globally recognised warm phase dated to roughly 1,060–1,725 CE. The study suggests that the strengthened Indian Summer Monsoon during this interval was shaped by a combination of global and regional drivers.

In a media statement, the researchers noted that La Niña–like conditions—typically associated with stronger Indian monsoons—may have prevailed during the MCA. Other contributing factors likely included a northward shift of the Inter Tropical Convergence Zone, positive temperature anomalies, higher sunspot numbers and increased solar activity.

Why this matters today

The Core Monsoon Zone is particularly sensitive to fluctuations in the Indian Summer Monsoon, making it a key region for understanding long-term hydroclimatic variability during the Late Holocene (also known as the Meghalayan Age). Scientists say insights from this period are crucial for contextualising present-day monsoon behaviour under ongoing climate change.

The BSIP team said high-resolution palaeoclimate records such as these can strengthen climate models used to simulate future rainfall patterns. Beyond academic interest, the findings have implications for water management, agriculture and climate-resilient policy planning in monsoon-dependent regions.

By revealing that central India once experienced a more intense and sustained monsoon than previously recognised, the study adds a deeper historical perspective to debates on how the Indian monsoon may respond to current and future warming.

Continue Reading

Society

Reliance to build India’s largest AI-ready data centre, positions Gujarat as global AI hub

As part of making Gujarat India’s artificial intelligence pioneer, in Jamnagar we are building India’s largest AI-ready data centre: Mukesh Ambani

Published

on

interview 3

Reliance Industries Limited, India’s largest business group, has announced plans to build the country’s largest artificial intelligence–ready data centre in Jamnagar, a coastal industrial city in the western Indian state of Gujarat, as part of a broader push to expand access to AI technologies at population scale.

The announcement was made by Mukesh Ambani, chairman and managing director of Reliance Industries, during the Vibrant Gujarat Regional Conference for the Kutch and Saurashtra region, a government-led investment and development forum focused on regional economic growth.

Ambani said the Jamnagar facility is being developed with a single objective: “Affordable AI for every Indian.” He positioned the project as a foundational investment in India’s digital infrastructure, aimed at enabling large-scale adoption of artificial intelligence across sectors including industry, services, education and public administration.

“As part of making Gujarat India’s artificial intelligence pioneer, in Jamnagar we are building India’s largest AI-ready data centre,” Ambani said, adding that the facility is intended to support widespread access to AI tools for individuals, enterprises and institutions.

Reliance also announced that its digital arm, Jio, will launch a “people-first intelligence platform,” designed to deliver AI services in multiple languages and across consumer devices. According to Ambani, the platform is being built in India for both domestic and international users, with a focus on everyday productivity and digital inclusion.

The AI initiative forms part of Reliance’s broader commitment to invest approximately Rs 7 trillion (about USD 85 billion) in Gujarat over the next five years. The company said the investments are expected to generate large-scale employment while positioning the region as a hub for emerging technologies.

The Jamnagar AI data centre is being developed alongside what Reliance describes as the world’s largest integrated clean energy manufacturing ecosystem, encompassing solar power, battery storage, green hydrogen and advanced materials. Ambani said the city, historically known as a major hub for oil refining and petrochemicals, is being re-engineered as a centre for next-generation energy and digital technologies.

The announcements were made in the presence of Indian Prime Minister Narendra Modi and Gujarat Chief Minister Bhupendra Patel, underscoring the alignment between public policy and private investment in India’s long-term technology and infrastructure strategy.

Continue Reading

Trending