Connect with us

Space & Physics

What brought carbon to Earth

This marks the first time a complex form of carbon essential for life on Earth has been observed outside the solar system. To learn more about the significance of this discovery, EdPublica interviewed the researchers behind the study– Gabi Wenzel, Ilsa Cooke, and Brett McGuire, who shared their insights on the implications of pyrene’s presence in space and its potential impact on our understanding of star and planet formation

Dipin Damodharan

Published

on

ff22 jpeg
The findings suggest pyrene may have been the source of much of the carbon in our solar system. “It’s an almost unbelievable sink of carbon,” says Brett McGuire, right, standing with lead author of the study Gabi Wenzel. Credits: Photo: Bryce Vickmark

A team led by researchers at MIT has detected pyrene, a complex carbon-containing molecule, in a distant interstellar cloud. This finding opens new avenues for understanding the chemical origins of our solar system. Pyrene, a type of polycyclic aromatic hydrocarbon (PAH), was found in a molecular cloud similar to the one from which our solar system formed.

This marks the first time a complex form of carbon essential for life on Earth has been observed outside the solar system. Its discovery sheds light on how the compounds necessary for life could originate in space. The team detected pyrene in
a star-forming region known as the Taurus Molecular Cloud, located 430 light-years away, making it one of the closest such clouds to Earth.

This discovery also aligns with recent findings from the asteroid Ryugu, suggesting that pyrene may have played a key role in the carbon composition of the early solar system. To learn more about the significance of this discovery, EdPublica interviewed the researchers behind the study– Gabi Wenzel, Ilsa Cooke, and Brett McGuire, who shared their insights on the implications of pyrene’s presence in space and its potential impact on our understanding of star and planet formation. Brett McGuire is an assistant professor of chemistry at MIT, Ilsa Cooke is an assistant professor of chemistry at the University of British Columbia, and Gabi Wenzel is a postdoctoral researcher in McGuire’s group at MIT.

Below, the team responds to questions from EdPublica Editor Dipin Damodharan about this unexpected and exciting discovery.

‘Pyrene could be a major source of carbon in our solar system’

Q: How does the discovery of pyrene in TMC-1 enhance our understanding of the chemical inventory that contributed to the formation of our solar system?

Gabi Wenzel:

Stars much like our own sun are born from dense molecular clouds. The discovery of pyrene in a molecular cloud called TMC-1, one that might be very similar to our sun’s natal cloud and which will go on to form a star of its own, significantly enhances our understanding of the chemical inventory that contributed to the formation of our own solar system. As a polycyclic aromatic hydrocarbon (PAH), pyrene is one of the most complex organic molecules found in early molecular clouds, suggesting that the building blocks of organic matter were available in the environments where stars and their orbiting (exo)planets form.

p3 MIT Space Compounds 02 PRESS
“One of the big questions in star and planet formation is: How much of the chemical inventory from that early molecular cloud is inherited and forms the base components of the solar system? What we’re looking at is the start and the end, and they’re showing the same thing.” McGuire says. Credits:Photo: Bryce Vickmark

This discovery sheds light on the chemical processes occurring in interstellar space, including gas-phase and surface reactions on dust grains, which are crucial for the evolution of organic chemistry. This further supports the notion that the primordial materials of our solar system contained a diverse range of organic compounds, providing insights into the potential for prebiotic chemistry on a young Earth and planetesimals.

Q: What specific challenges did you face in detecting pyrene, given that it is invisible to traditional radio astronomy methods, and how did the use of cyanopyrene help overcome these challenges?

Gabi Wenzel:

Pyrene, a fully symmetric PAH, does not possess a permanent electric dipole moment and hence is invisible in radio astronomical observations or rotational spectrometers in the laboratory. The CN radical is highly abundant in the cold and dark molecular cloud TMC-1, an environment that is about 10 K cold and in which you’d assume little chemistry to happen. However, earlier experimental works have shown that the CN addition (followed by hydrogen abstraction) to ringed hydrocarbon species such as benzene and toluene at low temperatures is a barrierless process.

j2 1

Adding a CN (nitrile) group to a hydrocarbon will drastically increase its permanent electric dipole moment and so allow rotational transitions. Indeed, several CN-functionalized species have been detected in TMC-1 and other sources, among which the CN-substituted benzene (cyanobenzene or benzonitrile) and other smaller PAHs, with cyanopyrene being the largest molecule found via radio astronomy to date, allowing us to infer the presence of pyrene itself.

Q: Can you elaborate on what it means for our understanding of carbon sources in the solar system that pyrene is found in both TMC-1 and asteroid Ryugu?

Ilsa Cooke:

TMC-1 is a famous example of a cold molecular cloud, one of the earliest stages of star and planet formation, while asteroids like Ryugu represent snapshots of later stages in the formation of solar systems. Asteroids are formed from material in the solar nebula that was inherited from the molecular cloud stage. Our radio observations of TMC-1 let us observe pyrene early on and possibly under conditions where it is first forming. Isotope signatures of the pyrene in Ryugu suggest it was formed in a cold interstellar cloud. From these two unique sets of measurements, we can start to unravel the inheritance of pyrene, and PAHs more generally, from their birth in interstellar space and their journey to new planets. If PAHs can survive all the way from the molecular cloud stage, they may provide planets with an important source of organic carbon.

p1 Dr. Cooke stands in front of the Green Bank Telescope. credit Dr. Brett McGuire
Dr. Cooke stands in front of the Green Bank Telescope. Credit Dr. Brett McGuire

Q: What are the different formation routes of PAHs that your research suggests, and how do these differ from previous hypotheses about PAH formation in space?

Ilsa Cooke:

Our results, combined with those of Zeichner et al., who measured pyrene in Ryugu, suggest that pyrene may form at low temperatures by “bottom-up” routes in molecular clouds. Previously, PAHs were most commonly associated with formation in high-temperature (ca. 1000 K) environments in the envelopes of dying stars. These stars are thought to eject their PAHs, along with other carbon-rich molecules, into the diffuse interstellar medium.

j3 1

However, the diffuse medium is a tenuous, harsh environment permeated by ultraviolet photons, and most astrochemists think that small PAHs would not survive their journey through the diffuse medium into dense molecular clouds. So we are still left with a puzzle: does that pyrene that we observe in TMC-1 form there, or was it formed somewhere else but it was able to survive its journey more efficiently than previously thought? If the pyrene is indeed formed within TMC-1, we do not yet know the chemical mechanism. Many possibilities exist, so close collaborations between laboratory astrochemists and observers will be critical to answer this question.

p4 Pyrene.svg
The structure of Pyrene, a polycyclic aromatic hydrocarbon, or PAH. Credit: Wikimedia

Q: What are your plans for investigating larger PAH molecules in TMC-1, and what specific hypotheses are you looking to test with these investigations?

Brett McGuire:

We have a number of other targets lined up – again focusing on PAH structures that should show this special stability demonstrated by pyrene. They present the same experimental challenges, including needing to devise appropriate synthetic routes in the laboratory before collecting their spectra. The major question is just how complex the PAH inventory actually gets at this earliest stage of star formation.

p5 Pyrene molecule from xtal ball png
Ball-and-stick model of the pyrene molecule, a polycyclic aromatic hydrocarbon consisting offour fused benzene rings. Credit: Wikimedia

Prior to our work in TMC-1, nearly everything we knew about PAHs came from infrared observations of bulk properties in much warmer and more energetic regions, where PAHs are thought to be much larger. Does the population in TMC-1 look the same as in these regions? Is it at an earlier stage of chemical evolution? And how does this distribution compare to what we see in our own Solar System?

j4 1

Q: How do your findings about pyrene and PAHs in interstellar clouds influence our broader understanding of organic chemistry in the universe, particularly in relation to the origins of life?

Brett McGuire:

Life as we know it depends on carbon – it is the backbone upon which all our molecular structures are constructed. Yet, the Earth overall is somewhat depleted in carbon relative to what we’d naively expect, and we still don’t fully understand where the carbon we do have came from originally. PAHs in general seem to be a massive reservoir of reactive carbon, and what we are now seeing is that that reservoir is already present at the earliest stages of star-formation. Combined with the evidence from Ryugu, we’re now also seeing indications that the inventory of PAHs, and thus this reservoir of carbon, may actually survive from this dark molecular cloud phase through the formation of a star to be eventually incorporated into the planetary system itself.

Dipin is the Co-founder and Editor-in-Chief of EdPublica. A journalist and editor with over 15 years of experience leading and co-founding both print and digital media outlets, he has written extensively on education, politics, and culture. His work has appeared in global publications such as The Huffington Post, The Himalayan Times, DailyO, Education Insider, and others.

Space & Physics

When Quantum Rules Break: How Magnetism and Superconductivity May Finally Coexist

A new theoretical breakthrough from MIT suggests that exotic quantum particles known as anyons could reconcile a long-standing paradox in physics, opening a path to an entirely new form of superconductivity.

Published

on

When Quantum Rules Break: How Magnetism and Superconductivity May Finally Coexist
Image credit: Pawel Czerwinski/UnSplash

For decades, physicists believed that superconductivity and magnetism were fundamentally incompatible. Superconductivity is fragile: even a weak magnetic field can disrupt the delicate pairing of electrons that allows electrical current to flow without resistance. Magnetism, by its very nature, should destroy superconductivity.

And yet, in the past year, two independent experiments upended this assumption.

In two different quantum materials, researchers observed something that should not have existed at all: superconductivity and magnetism appearing side by side. One experiment involved rhombohedral graphene, while another focused on the layered crystal molybdenum ditelluride (MoTe₂). The findings stunned the condensed-matter physics community and reopened a fundamental question—how is this even possible?

Now, a new theoretical study from physicists at the Massachusetts Institute of Technology offers a compelling explanation. Writing in the Proceedings of the National Academy of Sciences, the researchers propose that under the right conditions, electrons in certain magnetic materials can split into fractional quasiparticles known as anyons—and that these anyons, rather than electrons, may be responsible for superconductivity.

If confirmed, the work would introduce a completely new form of superconductivity, one that survives magnetism and is driven by exotic quantum particles instead of ordinary electrons.

“Many more experiments are needed before one can declare victory,” said Senthil Todadri, William and Emma Rogers Professor of Physics at MIT, in a media statement. “But this theory is very promising and shows that there can be new ways in which the phenomenon of superconductivity can arise.”

A Quantum Contradiction Comes Alive

Superconductivity and magnetism are collective quantum states born from the behavior of electrons. In magnets, electrons align their spins, producing a macroscopic magnetic field. In superconductors, electrons pair up into so-called Cooper pairs, allowing current to flow without energy loss.

For decades, textbooks taught that the two states repel each other. But earlier this year, that belief cracked.

At MIT, physicist Long Ju and colleagues reported superconductivity coexisting with magnetism in rhombohedral graphene—four to five stacked graphene layers arranged in a specific crystal structure.

“It was electrifying,” Todadri recalled in a media statement. “It set the place alive. And it introduced more questions as to how this could be possible.”

Soon after, another team reported a similar duality in MoTe₂. Crucially, MoTe₂ also exhibits an exotic quantum phenomenon known as the fractional quantum anomalous Hall (FQAH) effect, in which electrons behave as if they split into fractions of themselves.

Those fractional entities are anyons.

Meet the Anyons: Where “Anything Goes”

Anyons occupy a strange middle ground in the quantum world. Unlike bosons, which happily clump together, or fermions, which avoid one another, anyons follow their own rules—and exist only in two-dimensional systems.

First predicted in the 1980s and named by MIT physicist Frank Wilczek, anyons earned their name as a playful nod to their unconventional behavior: anything goes.

Decades ago, theorists speculated that anyons might be able to superconduct in magnetic environments. But because superconductivity and magnetism were believed to be mutually exclusive, the idea was largely abandoned.

The recent MoTe₂ experiments changed that calculus.

“People knew that magnetism was usually needed to get anyons to superconduct,” Todadri said in a media statement. “But superconductivity and magnetism typically do not occur together. So then they discarded the idea.”

Now, Todadri and MIT graduate student Zhengyan Darius Shi, co-author of the study, revisited the old theory—armed with new experimental clues.

Using quantum field theory, the team modeled how electrons fractionalize in MoTe₂ under FQAH conditions. Their calculations revealed that electrons can split into anyons carrying either one-third or two-thirds of an electron’s charge.

That distinction turned out to be critical.

Anyons are notoriously “frustrated” particles—quantum effects prevent them from moving freely together.

“When you have anyons in the system, what happens is each anyon may try to move, but it’s frustrated by the presence of other anyons,” Todadri explained in a media statement. “This frustration happens even if the anyons are extremely far away from each other.”

But when the system is dominated by two-thirds-charge anyons, the frustration breaks down. Under these conditions, the anyons begin to move collectively—forming a supercurrent without resistance.

“These anyons break out of their frustration and can move without friction,” Todadri said. “The amazing thing is, this is an entirely different mechanism by which a superconductor can form.”

The team also predicts a distinctive experimental signature: swirling supercurrents that spontaneously emerge in random regions of the material—unlike anything seen in conventional superconductors.

Why This Matters Beyond Physics

If experiments confirm superconducting anyons, the implications could extend far beyond fundamental physics.

Because anyons are inherently robust against environmental disturbances, they are considered prime candidates for building stable quantum bits, or qubits—the foundation of future quantum computers.

“These theoretical ideas, if they pan out, could make this dream one tiny step within reach,” Todadri said.

More broadly, the work hints at an entirely new category of matter.

“If our anyon-based explanation is what is happening in MoTe₂, it opens the door to the study of a new kind of quantum matter which may be called ‘anyonic quantum matter,’” Todadri said. “This will be a new chapter in quantum physics.”

For now, the theory awaits experimental confirmation. But one thing is already clear: a rule long thought unbreakable in quantum physics may no longer hold—and the quantum world just became a little stranger, and far more exciting.

Continue Reading

Society

From Qubits to Folk Puppetry: India’s Biggest Quantum Science Communication Conclave Wraps Up in Ahmedabad

From qubits to cultural storytelling, India’s biggest quantum science communication conclave in Ahmedabad showed how frontier science can meet people where they are. Through dialogue, demonstrations and folk art, the event reimagined how quantum knowledge reaches classrooms, communities and citizens.

Dipin Damodharan

Published

on

Untitled design 6
Dr P Bharati inaugurating the Quantum Communication Conference at Gujarat Science City

The Science Communication Conference on Public Understanding of Quantum Science & Technology, widely described as India’s biggest quantum conclave, concluded on 23 December 2025 at Gujarat Science City after two days of intensive discussions, demonstrations and public-facing engagement aimed at democratising quantum knowledge.

Organised by the Gujarat Council on Science and Technology (GUJCOST) under the Department of Science & Technology, Government of Gujarat, the conference was formally inaugurated on 22 December by P. Bharathi, IAS, Secretary, DST, in the presence of senior officials, scientists, science communicators and educators from India and abroad.

P. Bharathi stressed the need to make quantum education more accessible and to build stronger public engagement so citizens can relate to quantum ideas beyond labs and classrooms. She highlighted science communication as a key bridge between advanced research and society, especially for students and educators

The second day of the conclave featured the participation of Gujarat’s Minister for Science and Technology, Arjun Modhwadia, who addressed the gathering and chaired a special session on the quantum age and society’s collective future. Emphasising the state’s long-term vision, the Minister said Gujarat believes strongly in the democratisation of quantum science, asserting that advanced scientific knowledge must reach citizens, classrooms and communities rather than remain confined to elite research spaces.

Session minister 1
Minister Arjun Modhwadia participating in a special session on the quantum age and society’s collective future. Image credit: GUJCOST

The two-day conference brought together around 200 participants, featuring keynote lectures, panel discussions, hands-on demonstrations and research presentations focused on making complex quantum concepts accessible to non-specialist audiences. International perspectives were provided by Prof. Kanan Purakayastha (UK), Dr N. T. Lan from the Vietnam Institute of Science Information, and Prof. Anjana Singh of the Nepal Academy of Science and Technology, highlighting global challenges and best practices in public engagement with quantum science.

Dr. Narottam Sahoo, Advisor and Member Secretary, Gujarat Council on Science & Technology, Department of Science & Technology, Gujarat, lauded GUJCOST’s role in popularising science, saying, “GUJCOST has been playing an instrumental role in bringing science closer to society and making it accessible to all. We will further step up such initiatives and programmes. It is a proud acknowledgement that UNESCO recognised Gujarat as a partner in the year-long quantum celebrations.”

A dynamic demonstration session on the Hands-on Quantum Education Kit, led by Dr V. B. Kamble, former Director of Vigyan Prasar, ignited curiosity among participants. Learners explored practical quantum concepts through engaging, hands-on activities, making complex ideas easier to grasp. Such interactive learning experiences help strengthen scientific temperament and inspire the next generation of innovators.

Another distinctive highlight of the programme was a folk-science puppet show presented by Dr V. P. Singh and his team from the Indian Science Communication Society (ISCOS). Blending traditional performance art with scientific ideas, the show drew strong audience attention and demonstrated how indigenous cultural forms can be effectively used to communicate abstract quantum concepts. Dr Singh beautifully bridged farmers and frontier science through a folk puppet show demonstrating how traditional art forms can communicate cutting-edge scientific ideas.

WhatsApp Image 2025 12 22 at 13.49.03
Folk-science puppet show presented by Dr V. P. Singh and his team. Image credit: Dipin Damodharan

Aligned with the International Year of Quantum Science & Technology (IYQST-2025) and India’s National Quantum Mission, the conclave underscored the growing importance of science communication in preparing society for the emerging quantum era. Organisers said the conference succeeded in bridging the gap between advanced research and public understanding, reinforcing Gujarat’s position as a key hub for science outreach and quantum literacy in India.

Sessions also included interactive workshops, young researcher presentations, and dialogues on science communication methods that bridge academic science and public curiosity — reinforcing Gujarat’s aim to demystify quantum science and bring it into everyday understanding.

Continue Reading

Space & Physics

Ancient Martian Valleys Reveal Gradual Climate Shift From Warm And Wet To Cold And Icy: Study

A new study led by researchers at IIT Bombay has provided fresh evidence showing how Mars gradually transitioned from a warm, water-rich planet to a cold, icy world

Published

on

Untitled design 4
Left: Mars. Credit: Kevin Gill/Wikimedia. Right: Thaumasia region of Mars. Credit: NASA/JPL/USGS

A new study led by researchers at IIT Bombay has provided fresh evidence showing how Mars gradually transitioned from a warm, water-rich planet to a cold, icy world, by analysing ancient valley networks in the Thaumasian Highlands region of the Red Planet.

The findings, based on high-resolution orbital data, suggest that Mars experienced a long-term climate shift—from surface water-driven erosion during the Noachian period around four billion years ago to increasingly glacial and frozen conditions by the Hesperian period, roughly three billion years ago.

“Both these planets started with similar compositions and atmospheres. So, one of the most pressing questions is, where did all that water go, and why didn’t Mars evolve along the same direction as Earth? So, we wanted to find at what stage it lost its water,” said Alok Porwal of IIT Bombay in a statement issued by the institute.

Tracking Mars’ changing climate

The research focused on the Thaumasia Highlands, one of Mars’ most ancient geological regions, which stretches from the equator toward higher latitudes. According to the researchers, this makes it an ideal natural laboratory to study climate-driven geological changes over time.

“The Thaumasia Highlands is a region somewhat like the Indian subcontinent. It extends from the equator to higher latitudes, so it has a range of climates and geographies. It also has both very ancient geologic formations and more recent features, which gives an overall view of the planet,” Porwal said.

The team analysed more than 150 complex valley networks using datasets from NASA’s Context Camera (CTX) and Mars Orbiter Laser Altimeter (MOLA), the European Space Agency’s High Resolution Stereo Camera (HRSC), and ISRO’s Mars Orbiter Camera aboard the Mangalyaan mission. Each valley was carefully mapped to minimise errors caused by natural topographic variations.

Water-carved valleys to ice-shaped terrain

The researchers examined both qualitative and quantitative indicators to identify whether valleys were shaped by flowing water or glacial ice. Features such as fan-shaped sediment deposits and branching valley patterns pointed to fluvial erosion, while moraine-like formations, viscous flow features and ribbed terrain indicated glacial processes.

“When water is flowing, it carries heavy materials at the bottom and cuts the ground vertically. So, the shape it carves is more of a V-shaped valley. Glaciers, which have a mix of ice and debris, are heavier. When they move, they slide over the surface and create a U-shaped valley,” said Dibyendu Ghosh, the study’s first author, in the IIT Bombay statement.

Another key parameter was the angle at which valleys merge.

“When water is flowing, it follows the slope, so two valleys will flow parallel to each other and meet at an acute angle. Glaciers can move laterally, so the angles become more obtuse,” Ghosh explained.

The analysis showed that low-latitude valleys near the Martian equator were primarily shaped by flowing surface water, indicating warmer climatic conditions. In contrast, valleys at higher latitudes displayed increasing signs of fluvioglacial activity, suggesting a colder environment where ice played a growing role.

Evidence of frozen subsurface water

The study also supports the idea that much of Mars’ surface water gradually retreated underground as the planet cooled.

According to the researchers, valley formation peaked during the Noachian period between 4.1 and 3.7 billion years ago, declined during the transition to the Hesperian, and later showed stronger signatures of glacial modification and groundwater erosion.

Future exploration

While the findings offer a more coherent picture of Mars’ climatic evolution, the team noted that linking valley networks precisely to subsurface structures and geological timelines remains challenging.

Looking ahead, Porwal emphasised the need for more advanced missions to refine the planet’s climate history. “If I had a chance to suggest (for a future Mars mission), I would recommend a lander to get more geophysical data. And an orbiter with high-resolution imaging and infrared imaging capabilities to thoroughly study its geological history,” he said.

Continue Reading

Trending