Connect with us
climate change 7140601 1280 climate change 7140601 1280

Earth

The wildfires, floods, and heatwaves: Understanding the science behind climate change

The stories we tell today will define the world that future generations inherit. Will they look back and see a world that acted in time, or a world that failed to change until it was too late?

Image credit: Gerd Altmann from Pixabay
Dipin Damodharan

Published

on

In the heart of the Amazon rainforest, one of the most biodiverse places on Earth, a massive wildfire raged through the thick, lush greenery. This wasn’t just any fire; it was a calamity that consumed more than 17 million animals in its path, a chilling reminder of how the destruction of nature can reverberate across ecosystems. The Amazon, often referred to as the “lungs of the Earth,” plays a pivotal role in managing the planet’s climate. Yet, the actions of humanity—deforestation, illegal logging, and deliberate fires for agricultural purposes—have not only caused immeasurable loss to wildlife but have also accelerated climate change. The forest’s destruction led to a dangerous feedback loop, intensifying global weather patterns in ways that humans had never anticipated.

Fast forward to 2018, and the monsoon rains that battered Kerala, a state in India, were an equally dire omen. What began as an ordinary August downpour escalated into one of the deadliest floods in the region in almost a century. Rivers overflowed, breaking through dams and inundating vast swathes of land. Entire towns were submerged. Hundreds of lives were lost, and the devastation reached far beyond the physical damage, triggering social and economic upheaval. The aftermath left thousands homeless, as people sought refuge in makeshift shelters. The floods in Kerala were not an isolated incident; in fact, they were a warning from nature, signaling a world grappling with extreme weather events, made worse by human-induced climate change. The same was the case with 2024 Wayanad landslides.

And this global pattern of violent weather doesn’t stop in the tropics. In recent years, a blistering heatwave has swept across parts of North America. The US and Canada, known for their cold winters, have experienced record-breaking summer temperatures, an anomaly that scientists have linked directly to climate change. Oregon, once known for its temperate weather, saw the largest wildfire in its history, spurred by the heatwave. This was not just a local disaster—it was part of a larger, worrying trend in which global warming is creating the conditions for wildfires, floods, and heatwaves to proliferate at an unprecedented rate.

Climate change refers to significant, long-term shifts in weather patterns and temperatures.

These are not just isolated incidents. They are signs of a planet in distress, a planet experiencing the devastating effects of climate change, a phenomenon that is rapidly altering our environment and our lives.

The Science Behind the Crisis

Climate change refers to significant, long-term shifts in weather patterns and temperatures. These changes can manifest in a variety of ways: from prolonged droughts and unseasonal rains to extreme heatwaves and hurricanes. The root cause of today’s accelerated climate change is primarily human activity, particularly the burning of fossil fuels, deforestation, and industrial emissions, which release greenhouse gases like carbon dioxide into the atmosphere.

The Earth’s climate has always undergone natural variations—shifting from ice ages to warmer periods over millennia. However, what we are witnessing today is a much more rapid and intense change, driven by human actions. According to scientists, the Earth’s average temperature has risen by approximately 1.1°C since the late 19th century, with the past few decades seeing a rate of warming unprecedented in the geological record. The current trajectory suggests that global temperatures could rise by another 1-2°C by the end of the century, which would have catastrophic implications for both human and natural systems.

The impacts of this warming are already being felt globally. Melting ice caps and glaciers, rising sea levels, shifting weather patterns, and more frequent extreme weather events are some of the most visible signs. The Amazon rainforest, which once functioned as a massive carbon sink, is now a source of carbon emissions due to deforestation and wildfires. Meanwhile, heatwaves in parts of Europe and North America have reached previously unimaginable levels, set new temperature records and causing widespread harm.

A Global Phenomenon: From Kerala to Oregon

The devastating Kerala floods of 2018 were preceded by a series of warnings. The state’s weather patterns had been shifting, with increasingly unpredictable rainfall, leading to swollen rivers and the overflowing of dams. Once a relatively regular occurrence, floods in Kerala became more intense and frequent over time. Experts argue that climate change, through the intensification of the monsoon season and rising sea levels, has exacerbated the situation. But Kerala is not alone. Across the world, regions that were once resilient to extreme weather are now facing unprecedented levels of flooding, wildfires, and other disasters.

demonstration 4891276 1280
Image: Dominic Wunderlich from Pixabay

In 2020, when a record heatwave struck North America, temperatures in the Pacific Northwest soared to levels never seen before. Oregon, a state known for its temperate climate, reported its highest-ever temperatures. This heatwave triggered wildfires that devastated millions of acres of forest and caused significant loss of life. The fires were not simply a result of hot weather, but of the conditions created by climate change—dry forests, extreme heat, and shifting weather patterns all came together to fuel the fires.

Similarly, across the Atlantic, parts of Europe experienced an unusually harsh summer, with wildfires ravaging Spain, Portugal, and southern France. These fires were not natural events but were made more intense by the warming climate. Even in regions like Siberia, where wildfires were once rare, extreme temperatures and dry conditions have now turned vast areas into tinderboxes.

The Growing Threat: What the Future Holds

The world’s climate is now so volatile that extreme weather events are no longer an anomaly. They are becoming the new normal. Rising temperatures are leading to extreme heatwaves, higher sea levels are threatening coastal communities, and shifting weather patterns are disrupting ecosystems and agriculture. We are seeing longer droughts, more intense storms, and unpredictable rainfall, all of which are affecting millions of people across the globe.

In the coming decades, the situation is expected to worsen. According to scientists, we are on track to exceed a 1.5°C rise in global temperatures by 2050, with the potential for far-reaching consequences. Sea levels are projected to rise, displacing millions of people, while agriculture will suffer due to unpredictable rainfall and extreme temperatures. Already vulnerable regions, such as the Pacific Islands, will be the hardest hit, while major cities like New York, Mumbai, and Jakarta are all at risk of flooding.

Rising Temperatures and Their Far-reaching Effects

Even small changes in the Earth’s temperature can have profound impacts. A temperature-increase of just 1.5°C could lead to the irreversible melting of polar ice caps, resulting in a rise in sea levels that would submerge entire cities. Rising temperatures can also trigger the release of methane from thawing permafrost, a potent greenhouse gas that could accelerate global warming even further.

The stories from the Amazon, Kerala, Oregon, and beyond serve as stark reminders that the climate crisis is not a future problem—it is a present-day reality

One of the most troubling aspects of this warming is how it is changing the planet’s ecosystems. Species that once thrived in specific temperature ranges are now struggling to survive. Many are migrating to cooler areas, while others face extinction. As habitats shrink and weather patterns change, the very fabric of biodiversity is at risk.

Can We Change Course?

The question now is: Can we reverse or at least slow down these changes? While the situation is dire, scientists and environmentalists believe that immediate action can still mitigate the worst impacts of climate change. Transitioning to renewable energy sources, reducing deforestation, and investing in sustainable agricultural practices are essential steps. Governments, corporations, and individuals all have a role to play in ensuring that we shift towards a more sustainable and resilient future.

There is still time to act, but the window is closing fast. The more we delay, the more severe the impacts will be. The stories from the Amazon, Kerala, Oregon, and beyond serve as stark reminders that the climate crisis is not a future problem—it is a present-day reality that we can no longer afford to ignore.

A Global Call to Action

From the scorched rainforests of the Amazon to the flooded streets of Kerala and the heat-baked forests of Oregon, climate change is no longer a distant concept. It is here, now, and it affects all of us. But the power to change our future lies in our hands. By making sustainable choices, demanding policy changes, and holding accountable those who contribute to the climate crisis, we can begin to heal our planet before it’s too late.

The stories we tell today will define the world that future generations inherit. Will they look back and see a world that acted in time, or a world that failed to change until it was too late? The choice is ours.

Dipin is the Co-founder and Editor-in-Chief of EdPublica. A journalist and editor with over 15 years of experience leading and co-founding both print and digital media outlets, he has written extensively on education, politics, and culture. His work has appeared in global publications such as The Huffington Post, The Himalayan Times, DailyO, Education Insider, and others.

Earth

Life may have learned to breathe oxygen hundreds of millions of years earlier than thought

Published

on

MIT Study Suggests Life Used Oxygen Far Earlier Than Thought
Researchers mapped enzyme sequences from thousands of modern species onto the evolutionary tree of life. The analysis suggests that soon after cyanobacteria began producing oxygen, other organisms evolved enzymes to use it. Credits: Image: MIT News; figure courtesy of the researchers

Early life on Earth has found an interetsing turning point. A new study by researchers at Massachusetts Institute of Technology suggests that some of Earth’s earliest life forms may have evolved the ability to use oxygen hundreds of millions of years before it became a permanent part of the planet’s atmosphere.

Oxygen is essential to most life on Earth today, but it was not always abundant. Scientists have long believed that oxygen only became a stable component of the atmosphere around 2.3 billion years ago, during a turning point known as the Great Oxidation Event (GOE). The new findings indicate that biological use of oxygen may have begun much earlier, potentially reshaping scientists’ understanding of how life evolved on Earth.

The study, published in the journal Palaeogeography, Palaeoclimatology, Palaeoecology, traces the evolutionary origins of a key enzyme that allows organisms to use oxygen for aerobic respiration. This enzyme is present in most oxygen-breathing life forms today, from bacteria to humans.

MIT geobiologists found that the enzyme likely evolved during the Mesoarchean era, between 3.2 and 2.8 billion years ago—several hundred million years before the Great Oxidation Event.

The findings may help answer a long-standing mystery in Earth’s history: why it took so long for oxygen to accumulate in the atmosphere. Scientists know that cyanobacteria, the first organisms capable of producing oxygen through photosynthesis, emerged around 2.9 billion years ago. Yet atmospheric oxygen levels remained low for hundreds of millions of years after their appearance.

While geochemical reactions with rocks were previously thought to be the main reason oxygen failed to build up early on, the MIT study suggests biology itself may also have played a role. Early organisms that evolved the oxygen-using enzyme may have consumed small amounts of oxygen as soon as it was produced, limiting how much could accumulate in the atmosphere.

“This does dramatically change the story of aerobic respiration,” said Fatima Husain, postdoctoral researcher in MIT’s Department of Earth, Atmospheric and Planetary Sciences, said in a media statement. “Our study adds to this very recently emerging story that life may have used oxygen much earlier than previously thought. It shows us how incredibly innovative life is at all periods in Earth’s history.”

The research team analysed thousands of genetic sequences of heme-copper oxygen reductases—enzymes essential for aerobic respiration—across a wide range of modern organisms. By mapping these sequences onto an evolutionary tree and anchoring them with fossil and geological evidence, the researchers were able to estimate when the enzyme first emerged.

“The puzzle pieces are fitting together and really underscore how life was able to diversify and live in this new, oxygenated world

Tracing the enzyme back through time, the team concluded that oxygen use likely appeared soon after cyanobacteria began producing oxygen. Organisms living close to these microbes may have rapidly consumed the oxygen they released, delaying its escape into the atmosphere.

“Considered all together, MIT research has filled in the gaps in our knowledge of how Earth’s oxygenation proceeded,” Husain said. “The puzzle pieces are fitting together and really underscore how life was able to diversify and live in this new, oxygenated world.”

The study adds to a growing body of evidence suggesting that life on Earth adapted to oxygen far earlier than previously believed, offering new insights into how biological innovation shaped the planet’s atmosphere and the evolution of complex life.

Continue Reading

Earth

The Heat Trap: How Climate Change Is Pushing Extreme Weather Into New Parts of the World

MIT scientists say a hidden feature of the atmosphere is allowing dangerous humid heat to build up in parts of the world that were once considered climatically mild — setting the stage for longer heat waves and more violent storms.

Published

on

The Heat Trap: How Climate Change Is Pushing Extreme Weather Into New Parts of the World
Image credit: Franz Bachinger/ Pixabay

For decades, long spells of suffocating heat followed by explosive thunderstorms were largely confined to the tropics. But that pattern is now spreading into the planet’s midlatitudes, and researchers at the Massachusetts Institute of Technology believe they know why.

In a new study published in Science Advances, MIT scientists have identified atmospheric inversions — layers of warm air sitting over cooler air near the ground — as a critical factor controlling how hot, humid, and storm-prone a region can become. Their findings suggest that parts of the United States and East Asia could face unfamiliar and dangerous combinations of oppressive heat and extreme rainfall as the climate continues to warm.

Inversions are already notorious for trapping air pollution close to the ground. The MIT team now shows they also act like thermal lids, allowing heat and moisture to accumulate near the surface for days at a time. The longer an inversion persists, the more unbearable the humid heat becomes. And when that lid finally breaks, the stored energy can be released violently, fuelling intense thunderstorms and heavy downpours.

“Our analysis shows that the eastern and midwestern regions of U.S. and the eastern Asian regions may be new hotspots for humid heat in the future climate,” said Funing Li, a postdoctoral researcher in MIT’s Department of Earth, Atmospheric and Planetary Sciences, in a media statement.

The mechanism is especially important in midlatitude regions, where inversions are common. In the US, areas east of the Rocky Mountains frequently experience warm air aloft flowing over cooler surface air — a configuration that can linger and intensify under climate change.

“As the climate warms, theoretically the atmosphere will be able to hold more moisture,” said Talia Tamarin-Brodsky, an assistant professor at MIT and co-author of the study, in a media statement. “Which is why new regions in the midlatitudes could experience moist heat waves that will cause stress that they weren’t used to before.”

Why heat doesn’t always break

Under normal conditions, rising surface temperatures trigger convection: warm air rises, cool air sinks, clouds form, and storms develop that can eventually cool things down. But the researchers approached the problem differently, asking what actually limits how much heat and moisture can build up before convection begins.

By analysing the total energy of air near the surface — combining both dry heat and moisture — they found that inversions dramatically raise that limit. When warm air caps cooler air below, surface air must accumulate far more energy before it can rise through the barrier. The stronger and more stable the inversion, the more extreme the heat and humidity must become.

“This increasing inversion has two effects: more severe humid heat waves, and less frequent but more extreme convective storms,” Tamarin-Brodsky said.

A Midwest warning sign

Inversions can form overnight, when the ground cools rapidly, or when cool marine air slides under warmer air inland. But in the central United States, geography plays a key role.

“The Great Plains and the Midwest have had many inversions historically due to the Rocky Mountains,” Li said in a media statement. “The mountains act as an efficient elevated heat source, and westerly winds carry this relatively warm air downstream into the central and midwestern U.S., where it can help create a persistent temperature inversion that caps colder air near the surface.”

As global warming strengthens and stabilises these atmospheric layers, the researchers warn that regions like the Midwest may be pushed toward climate extremes once associated with far warmer parts of the world.

“In a future climate for the Midwest, they may experience both more severe thunderstorms and more extreme humid heat waves,” Tamarin-Brodsky said in a media statement. “Our theory gives an understanding of the limit for humid heat and severe convection for these communities that will be future heat wave and thunderstorm hotspots.”

The study offers climate scientists a new way to assess regional risk — and a stark reminder that climate change is not just intensifying known hazards, but exporting them to places unprepared for their consequences.

Continue Reading

Climate

Climate Extremes in 2025 Exposed Inequality and the Limits of Adaptation, Scientists Warn

2025 Wasn’t Just Hot — It Pushed the World to the Edge of Climate Survival

Dipin Damodharan

Published

on

Climate Extremes in 2025 Exposed Inequality and the Limits of Adaptation, Scientists Warn
Image credit: RDNE Stock project/Pexels

Extreme weather events intensified across the globe in 2025, disproportionately impacting vulnerable communities and pushing many regions close to the limits of adaptation, according to the latest annual report by World Weather Attribution (WWA). Despite the absence of a strong El Niño, global temperatures remained exceptionally high, making 2025 one of the hottest years on record and underscoring the growing influence of human-induced climate change.

The report, Unequal Evidence and Impacts, Limits to Adaptation: Extreme Weather in 2025, analysed 22 major extreme weather events in depth, selected from 157 climate disasters that met humanitarian impact thresholds worldwide. Floods and heatwaves were the most frequent, with 49 events each, followed by storms (38), wildfires (11), droughts (7) and cold spells (3).

Although 2025 occurred under weak La Niña conditions—typically associated with cooler global temperatures—the three-year global temperature average crossed the 1.5°C warming threshold for the first time. Scientists attribute this persistent heat to rising greenhouse gas emissions, which continue to override natural climate variability.

“Each year, the risks of climate change become less hypothetical and more brutal reality,” said Friederike Otto, Professor of Climate Science at Imperial College London and co-founder of World Weather Attribution, in a statement. “Our report shows that despite efforts to cut carbon emissions, they have fallen short in preventing global temperature rise and the worst impacts. Decision-makers must face the reality that their continued reliance on fossil fuels is costing lives, billions in economic losses, and causing irreversible damage to communities worldwide”

Heatwaves: the deadliest disaster of 2025

Heatwaves emerged as the deadliest extreme weather event of the year. In Europe alone, an estimated 24,400 people died during a single summer heatwave between June and August, across 854 cities representing nearly 30% of the continent’s population.

In South Sudan, human-induced climate change made a February heatwave 4°C hotter than it would have been in a pre-industrial climate, turning what was once a rare event into one expected every two years. Schools were closed nationwide after dozens of children collapsed from heat exhaustion, highlighting how extreme heat disrupts education and deepens gender and social inequalities.

Floods, storms and data gaps in the Global South

Floods were the most frequently triggered hazard studied by WWA in 2025, with devastating impacts reported in Pakistan, Sri Lanka, Indonesia, Botswana and the Mississippi River Basin. However, nearly one-quarter of attribution studies remained inconclusive, largely due to poor weather data and limitations in climate models, particularly in the Global South.  

This uneven scientific evidence mirrors broader climate injustice. Many regions experiencing the most severe impacts lack dense weather station networks, making it difficult to quantify the role of climate change precisely—even when human suffering is evident.

Wildfires and storms pushed adaptation limits

The report also documented record-breaking wildfires, including the most economically destructive fires in modern US history in Los Angeles, which caused an estimated $30 billion in insured losses and were linked to around 400 deaths. Climate change increased the likelihood of extreme fire weather by 35%, driven by hotter, drier, and windier conditions.  

Tropical cyclones further illustrated the limits of adaptation. Hurricane Melissa, which struck the Caribbean, produced rainfall intensities at least 9% higher due to climate change. While early warnings and evacuations in Jamaica and Cuba saved lives, the storm still caused widespread damage, demonstrating that preparedness alone cannot fully offset intensifying extremes

A new era of dangerous extremes

“2025 showed us that we are now in a persistent new era of dangerous, extreme weather,” said Theodore Keeping, researcher at Imperial College London, in a statement. “The evidence of the severe, real impacts of climate change are more clear than ever, and it is essential that action is taken to stop fossil fuel emissions, and to help the world’s most vulnerable prepare for the devastating impacts of increasingly extreme weather.”

Echoing this concern, Sjoukje Philip, researcher at the Royal Netherlands Meteorological Institute (KNMI), noted in a statement that natural climate variability alone cannot explain the year’s extreme heat. “The continuous rise in greenhouse gas emissions has pushed our climate into a new, more extreme state, where even small increases in global temperatures now trigger disproportionately severe impacts”

Emissions cuts are non-negotiable

While the report emphasises the importance of adaptation—such as early warning systems, urban planning, and ecosystem restoration—it concludes that rapid and deep reductions in fossil fuel emissions remain essential to avoid the worst climate impacts.

As the WWA scientists warn, without decisive global action, extreme weather events like those seen in 2025 will no longer be exceptions, but the defining feature of a warming world.

Continue Reading

Trending