Earth
$4.3 Trillion Economic Loss: The Rising Cost of Climate Change and the Urgent Need for Early Warning Systems
Early warning systems, which are proven to reduce the economic and human costs of extreme weather, remain inaccessible to nearly half of the world’s countries
The world is paying an increasingly heavy price for the devastating effects of climate change. In the last five decades alone, global economic losses due to weather, climate, and water-related disasters have soared to an eye-watering $4.3 trillion. The death toll, though falling, remains tragically high with over 2 million people having lost their lives to these extreme events. As the planet continues to heat up, with 2024 marked as the hottest year on record, the financial toll of these disasters is only set to rise.
The problem isn’t just the scale of these losses, but the lack of adequate systems in place to mitigate them. Early warning systems, which are proven to reduce the economic and human costs of extreme weather, remain inaccessible to nearly half of the world’s countries. While the technology exists, the disparity in access to life-saving forecasting and warning systems is leaving millions vulnerable to storms, floods, wildfires, and droughts that could otherwise be anticipated.

“We are more than just weather forecasters,” said Celeste Saulo, Secretary-General of the World Meteorological Organization (WMO), which recently marked its 75th anniversary. “WMO makes the world safer, more secure, and prosperous.” Yet, despite decades of advancements in forecasting, gaps remain. Countries with limited resources struggle to set up the infrastructure needed to protect their populations, which often face the brunt of the most severe consequences of climate change.

In his message for World Meteorological Day, UN Secretary-General António Guterres highlighted the stark reality: “It is disgraceful that, in a digital age, lives and livelihoods are being lost because people have no access to effective early warning systems.” The warning from Guterres couldn’t be clearer: early warning systems are not luxuries. They are necessities—and crucial investments that offer nearly a ten-fold return.
The data is irrefutable. From satellite feeds to ocean buoys, billions of measurements are collected daily from across the globe. Yet, in many parts of the world, these critical insights into climate and weather patterns do not reach those who need them most. Gaps in observation networks and forecasting accuracy continue to undermine the ability of vulnerable communities to prepare for and respond to disasters.
WMO’s Early Warnings for All initiative seeks to address this crisis by ensuring that by 2027, every country, no matter how economically or technologically challenged, has access to effective early warning systems. As of 2024, 108 countries report some capacity for multi-hazard early warning systems—more than double the number from 2015. However, this progress is not fast enough to prevent future calamities. The economic costs of inaction are simply too high.
| Key Data Points |
|---|
| $4.3 Trillion – Total global economic losses from weather, climate, and water-related hazards between 1970 and 2021. |
| 2 Million+ – Number of lives lost to weather, climate, and water-related disasters between 1970 and 2021. |
| 108 Countries – The number of countries with some capacity for multi-hazard early warning systems as of 2024, more than double the 52 countries in 2015. |
| $1 Investment in Early Warning Systems – The potential return on investment is nearly ten times the cost, according to UN Secretary-General António Guterres. |
| 2024 – The year marked as the hottest year on record. |
| 75 Years – The number of years the World Meteorological Organization (WMO) has been a UN specialized agency, working to improve global resilience to climate change. |
| Source: WMO |
Between 1970 and 2021, climate-related disasters cost the global economy $4.3 trillion—a figure that continues to climb year after year. Without early warnings, this loss is compounded by the inability of countries to adapt or respond in time, resulting in more widespread destruction and human suffering. But for every dollar invested in early warning systems, the potential savings and lives saved are immense.
“The staff of National Meteorological and Hydrological Services are like doctors and nurses – working 24/7 to safeguard and promote public well-being,” Saulo emphasized. These services are crucial for monitoring climate and weather changes and issuing warnings, but much of the world’s population still lacks access to these vital resources.
WMO’s call to action on World Meteorological Day, though after the fact, remains urgent: “We need high-level political support, increased technology sharing, greater collaboration between governments and businesses, and a major effort to scale-up finance,” said Guterres. He emphasized the importance of boosting the lending capacity of multilateral development banks to ensure that resources reach the nations most at risk.
As the planet faces increasingly volatile climate conditions, the economic costs of inaction are mounting. Without the necessary investment in early warning systems, millions will continue to suffer, and the global economy will pay the price. The time to act is now. Climate change may be an overwhelming challenge, but with the right systems in place, we can mitigate the damage, save lives, and protect our collective future.
Earth
Life may have learned to breathe oxygen hundreds of millions of years earlier than thought
Early life on Earth has found an interetsing turning point. A new study by researchers at Massachusetts Institute of Technology suggests that some of Earth’s earliest life forms may have evolved the ability to use oxygen hundreds of millions of years before it became a permanent part of the planet’s atmosphere.
Oxygen is essential to most life on Earth today, but it was not always abundant. Scientists have long believed that oxygen only became a stable component of the atmosphere around 2.3 billion years ago, during a turning point known as the Great Oxidation Event (GOE). The new findings indicate that biological use of oxygen may have begun much earlier, potentially reshaping scientists’ understanding of how life evolved on Earth.
The study, published in the journal Palaeogeography, Palaeoclimatology, Palaeoecology, traces the evolutionary origins of a key enzyme that allows organisms to use oxygen for aerobic respiration. This enzyme is present in most oxygen-breathing life forms today, from bacteria to humans.
Scientists have long believed that oxygen only became a stable component of the atmosphere around 2.3 billion years ago, during a turning point known as the Great Oxidation Event (GOE). The new findings indicate that biological use of oxygen may have begun much earlier, potentially reshaping scientists’ understanding of how life evolved on Earth
MIT geobiologists found that the enzyme likely evolved during the Mesoarchean era, between 3.2 and 2.8 billion years ago—several hundred million years before the Great Oxidation Event.
The findings may help answer a long-standing mystery in Earth’s history: why it took so long for oxygen to accumulate in the atmosphere. Scientists know that cyanobacteria, the first organisms capable of producing oxygen through photosynthesis, emerged around 2.9 billion years ago. Yet atmospheric oxygen levels remained low for hundreds of millions of years after their appearance.
While geochemical reactions with rocks were previously thought to be the main reason oxygen failed to build up early on, the MIT study suggests biology itself may also have played a role. Early organisms that evolved the oxygen-using enzyme may have consumed small amounts of oxygen as soon as it was produced, limiting how much could accumulate in the atmosphere.
“This does dramatically change the story of aerobic respiration,” said Fatima Husain, postdoctoral researcher in MIT’s Department of Earth, Atmospheric and Planetary Sciences, said in a media statement. “Our study adds to this very recently emerging story that life may have used oxygen much earlier than previously thought. It shows us how incredibly innovative life is at all periods in Earth’s history.”
The research team analysed thousands of genetic sequences of heme-copper oxygen reductases—enzymes essential for aerobic respiration—across a wide range of modern organisms. By mapping these sequences onto an evolutionary tree and anchoring them with fossil and geological evidence, the researchers were able to estimate when the enzyme first emerged.
“The puzzle pieces are fitting together and really underscore how life was able to diversify and live in this new, oxygenated world
Tracing the enzyme back through time, the team concluded that oxygen use likely appeared soon after cyanobacteria began producing oxygen. Organisms living close to these microbes may have rapidly consumed the oxygen they released, delaying its escape into the atmosphere.
“Considered all together, MIT research has filled in the gaps in our knowledge of how Earth’s oxygenation proceeded,” Husain said. “The puzzle pieces are fitting together and really underscore how life was able to diversify and live in this new, oxygenated world.”
The study adds to a growing body of evidence suggesting that life on Earth adapted to oxygen far earlier than previously believed, offering new insights into how biological innovation shaped the planet’s atmosphere and the evolution of complex life.
Earth
The Heat Trap: How Climate Change Is Pushing Extreme Weather Into New Parts of the World
MIT scientists say a hidden feature of the atmosphere is allowing dangerous humid heat to build up in parts of the world that were once considered climatically mild — setting the stage for longer heat waves and more violent storms.
For decades, long spells of suffocating heat followed by explosive thunderstorms were largely confined to the tropics. But that pattern is now spreading into the planet’s midlatitudes, and researchers at the Massachusetts Institute of Technology believe they know why.
In a new study published in Science Advances, MIT scientists have identified atmospheric inversions — layers of warm air sitting over cooler air near the ground — as a critical factor controlling how hot, humid, and storm-prone a region can become. Their findings suggest that parts of the United States and East Asia could face unfamiliar and dangerous combinations of oppressive heat and extreme rainfall as the climate continues to warm.
Inversions are already notorious for trapping air pollution close to the ground. The MIT team now shows they also act like thermal lids, allowing heat and moisture to accumulate near the surface for days at a time. The longer an inversion persists, the more unbearable the humid heat becomes. And when that lid finally breaks, the stored energy can be released violently, fuelling intense thunderstorms and heavy downpours.
“Our analysis shows that the eastern and midwestern regions of U.S. and the eastern Asian regions may be new hotspots for humid heat in the future climate,” said Funing Li, a postdoctoral researcher in MIT’s Department of Earth, Atmospheric and Planetary Sciences, in a media statement.
The mechanism is especially important in midlatitude regions, where inversions are common. In the US, areas east of the Rocky Mountains frequently experience warm air aloft flowing over cooler surface air — a configuration that can linger and intensify under climate change.
“As the climate warms, theoretically the atmosphere will be able to hold more moisture,” said Talia Tamarin-Brodsky, an assistant professor at MIT and co-author of the study, in a media statement. “Which is why new regions in the midlatitudes could experience moist heat waves that will cause stress that they weren’t used to before.”
Why heat doesn’t always break
Under normal conditions, rising surface temperatures trigger convection: warm air rises, cool air sinks, clouds form, and storms develop that can eventually cool things down. But the researchers approached the problem differently, asking what actually limits how much heat and moisture can build up before convection begins.
By analysing the total energy of air near the surface — combining both dry heat and moisture — they found that inversions dramatically raise that limit. When warm air caps cooler air below, surface air must accumulate far more energy before it can rise through the barrier. The stronger and more stable the inversion, the more extreme the heat and humidity must become.
“This increasing inversion has two effects: more severe humid heat waves, and less frequent but more extreme convective storms,” Tamarin-Brodsky said.
A Midwest warning sign
Inversions can form overnight, when the ground cools rapidly, or when cool marine air slides under warmer air inland. But in the central United States, geography plays a key role.
“The Great Plains and the Midwest have had many inversions historically due to the Rocky Mountains,” Li said in a media statement. “The mountains act as an efficient elevated heat source, and westerly winds carry this relatively warm air downstream into the central and midwestern U.S., where it can help create a persistent temperature inversion that caps colder air near the surface.”
As global warming strengthens and stabilises these atmospheric layers, the researchers warn that regions like the Midwest may be pushed toward climate extremes once associated with far warmer parts of the world.
“In a future climate for the Midwest, they may experience both more severe thunderstorms and more extreme humid heat waves,” Tamarin-Brodsky said in a media statement. “Our theory gives an understanding of the limit for humid heat and severe convection for these communities that will be future heat wave and thunderstorm hotspots.”
The study offers climate scientists a new way to assess regional risk — and a stark reminder that climate change is not just intensifying known hazards, but exporting them to places unprepared for their consequences.
Climate
Climate Extremes in 2025 Exposed Inequality and the Limits of Adaptation, Scientists Warn
2025 Wasn’t Just Hot — It Pushed the World to the Edge of Climate Survival
Extreme weather events intensified across the globe in 2025, disproportionately impacting vulnerable communities and pushing many regions close to the limits of adaptation, according to the latest annual report by World Weather Attribution (WWA). Despite the absence of a strong El Niño, global temperatures remained exceptionally high, making 2025 one of the hottest years on record and underscoring the growing influence of human-induced climate change.
The report, Unequal Evidence and Impacts, Limits to Adaptation: Extreme Weather in 2025, analysed 22 major extreme weather events in depth, selected from 157 climate disasters that met humanitarian impact thresholds worldwide. Floods and heatwaves were the most frequent, with 49 events each, followed by storms (38), wildfires (11), droughts (7) and cold spells (3).
Although 2025 occurred under weak La Niña conditions—typically associated with cooler global temperatures—the three-year global temperature average crossed the 1.5°C warming threshold for the first time. Scientists attribute this persistent heat to rising greenhouse gas emissions, which continue to override natural climate variability.
“Each year, the risks of climate change become less hypothetical and more brutal reality,” said Friederike Otto, Professor of Climate Science at Imperial College London and co-founder of World Weather Attribution, in a statement. “Our report shows that despite efforts to cut carbon emissions, they have fallen short in preventing global temperature rise and the worst impacts. Decision-makers must face the reality that their continued reliance on fossil fuels is costing lives, billions in economic losses, and causing irreversible damage to communities worldwide”
Heatwaves: the deadliest disaster of 2025
Heatwaves emerged as the deadliest extreme weather event of the year. In Europe alone, an estimated 24,400 people died during a single summer heatwave between June and August, across 854 cities representing nearly 30% of the continent’s population.
In South Sudan, human-induced climate change made a February heatwave 4°C hotter than it would have been in a pre-industrial climate, turning what was once a rare event into one expected every two years. Schools were closed nationwide after dozens of children collapsed from heat exhaustion, highlighting how extreme heat disrupts education and deepens gender and social inequalities.
Floods, storms and data gaps in the Global South
Floods were the most frequently triggered hazard studied by WWA in 2025, with devastating impacts reported in Pakistan, Sri Lanka, Indonesia, Botswana and the Mississippi River Basin. However, nearly one-quarter of attribution studies remained inconclusive, largely due to poor weather data and limitations in climate models, particularly in the Global South.
This uneven scientific evidence mirrors broader climate injustice. Many regions experiencing the most severe impacts lack dense weather station networks, making it difficult to quantify the role of climate change precisely—even when human suffering is evident.
Wildfires and storms pushed adaptation limits
The report also documented record-breaking wildfires, including the most economically destructive fires in modern US history in Los Angeles, which caused an estimated $30 billion in insured losses and were linked to around 400 deaths. Climate change increased the likelihood of extreme fire weather by 35%, driven by hotter, drier, and windier conditions.
Tropical cyclones further illustrated the limits of adaptation. Hurricane Melissa, which struck the Caribbean, produced rainfall intensities at least 9% higher due to climate change. While early warnings and evacuations in Jamaica and Cuba saved lives, the storm still caused widespread damage, demonstrating that preparedness alone cannot fully offset intensifying extremes
A new era of dangerous extremes
“2025 showed us that we are now in a persistent new era of dangerous, extreme weather,” said Theodore Keeping, researcher at Imperial College London, in a statement. “The evidence of the severe, real impacts of climate change are more clear than ever, and it is essential that action is taken to stop fossil fuel emissions, and to help the world’s most vulnerable prepare for the devastating impacts of increasingly extreme weather.”
Echoing this concern, Sjoukje Philip, researcher at the Royal Netherlands Meteorological Institute (KNMI), noted in a statement that natural climate variability alone cannot explain the year’s extreme heat. “The continuous rise in greenhouse gas emissions has pushed our climate into a new, more extreme state, where even small increases in global temperatures now trigger disproportionately severe impacts”
Emissions cuts are non-negotiable
While the report emphasises the importance of adaptation—such as early warning systems, urban planning, and ecosystem restoration—it concludes that rapid and deep reductions in fossil fuel emissions remain essential to avoid the worst climate impacts.
As the WWA scientists warn, without decisive global action, extreme weather events like those seen in 2025 will no longer be exceptions, but the defining feature of a warming world.
-
Society1 month agoThe Ten-Rupee Doctor Who Sparked a Health Revolution in Kerala’s Tribal Highlands
-
COP303 months agoBrazil Cuts Emissions by 17% in 2024—Biggest Drop in 16 Years, Yet Paris Target Out of Reach
-
Earth3 months agoData Becomes the New Oil: IEA Says AI Boom Driving Global Power Demand
-
COP303 months agoCorporate Capture: Fossil Fuel Lobbyists at COP30 Hit Record High, Outnumbering Delegates from Climate-Vulnerable Nations
-
Society2 months agoFrom Qubits to Folk Puppetry: India’s Biggest Quantum Science Communication Conclave Wraps Up in Ahmedabad
-
Women In Science4 months agoThe Data Don’t Lie: Women Are Still Missing from Science — But Why?
-
Space & Physics2 months agoIndian Physicists Win 2025 ICTP Prize for Breakthroughs in Quantum Many-Body Physics
-
Health3 months agoAir Pollution Claimed 1.7 Million Indian Lives and 9.5% of GDP, Finds The Lancet
