Earth
A Time When We Count Plastic Waves on the Shore
It’s easy to overlook the plastic waste scattered on our beaches or floating in the ocean. But the reality is clear: plastic pollution is suffocating our oceans and destroying marine life
What does the reality of our oceans look like today? Plastic pollution. Do we go to the beach without ever noticing a plastic bottle or plastic waste amidst the beauty of the waves and the vast sea? Or have we lost sight of nature’s true state, consumed by the exploitation we have allowed? It’s time we took a moment to reflect.
Today, one of the biggest challenges facing our oceans is plastic pollution. Since 2018, the world has produced 359 million metric tons of plastic. According to the United Nations Environment Programme (UNEP), approximately 400 million tons of plastic waste are generated annually, with around 36% used for packaging—much of which ends up in landfills. In India alone, around 3.3 million metric tons of plastic waste is generated each year. And a large portion of this, approximately 8 million metric tons, ends up in the oceans annually.
Currently, our oceans are home to about 5.25 trillion plastic items, weighing a staggering 268,940 tons. By 2050, it is projected that there will be more plastic in the oceans than fish, according to a 2016 report presented at the World Economic Forum.
Disaster in the Deep Blue
Why is plastic waste so widespread in our oceans? As we walk along the beach, enjoying the beauty of the waves and the endless blue horizon, have we ever stopped to think about the plastic we might be overlooking? Beneath the surface, our oceans now hold vast quantities of plastic waste that are invisible to the naked eye, often carried by rivers or discarded carelessly by humans.
The plastic waste that litters the oceans consists of both macroplastics (larger objects such as bags and bottles) and microplastics (tiny particles that result from the breakdown of larger plastics). These microplastics, often less than 5 millimeters in size, are created as a result of exposure to sunlight, wave action, and other environmental factors. Even though these particles become so small, they do not disappear completely from the marine ecosystem.
Plastic waste, whether it’s a discarded plastic bottle, fishing gear, or other synthetic materials, poses a major threat to marine life. Marine creatures consume plastic debris, mistaking it for food, and suffer from serious health consequences. The damage is not limited to marine organisms; human beings are also at risk, as the toxic chemicals in plastics enter the food chain.
The Ecological and Economic Impact
The consequences of plastic pollution are far-reaching. For marine ecosystems, plastics lead to habitat destruction, toxic contamination, and loss of biodiversity. For humans, plastic waste affects fisheries, tourism, and coastal economies. Plastic waste also disrupts the functioning of marine ecosystems, which are essential for regulating the climate and providing food and oxygen for life on Earth.
Plastic debris floating on the water’s surface or sinking to the ocean floor threatens marine navigation and ship safety as well. The potential for harm is vast, and addressing the problem is crucial to preserving the future of our oceans.
Why Are We Still Struggling to Tackle Ocean Pollution?
Even as millions of tons of plastic waste flow into the oceans every year, why is there still no effective response to this environmental crisis? One reason is the lack of comprehensive research and detailed studies on the extent of microplastic pollution and its long-term impact on marine ecosystems. To understand the scale of the problem, we need to know how much waste is accumulating in the oceans and where the most significant concentrations are.
While commercial vessels and research ships have gathered some data, using plankton nets to collect ocean samples, this method only covers a small fraction of the vast oceans. The challenge is that the sheer size of the oceans makes it nearly impossible to assess the full scale of plastic pollution using current techniques. Moreover, long-term data on how plastic waste is changing over time is still limited.
The Impact of Plastic on Marine Life and Human Health
The effects of plastic pollution on marine life are devastating. Fish, birds, and other marine creatures often mistake plastic debris for food, leading to ingestion, which can be fatal. Some animals become entangled in fishing nets or plastic packaging, restricting their movement and leading to death. Even more concerning is the potential for toxic chemicals from plastics to enter the food chain, eventually reaching humans.
Moreover, plastic waste that floats on the surface or sinks to the bottom of the ocean poses a threat to navigation and shipping, making it difficult for vessels to safely navigate through affected areas. As plastics degrade over time, they release harmful chemicals into the water, further exacerbating the environmental damage.
Using Satellites to Track Plastic Waste
Understanding the extent and movement of plastic waste in the oceans is key to mitigating its impacts. Researchers at the University of Michigan once proposed an innovative solution by leveraging satellite data to monitor plastic pollution. NASA’s Cyclone Global Navigation Satellite System (CYGNSS), launched in 2016, has been used to track microplastics in the ocean, helping scientists better understand their location and movement. The research conducted by the University of Michigan on using NASA’s satellite data to monitor and track plastic waste in the oceans was published in 2020.
This method utilizes radar to measure surface roughness, which can indicate the presence of plastic debris. Since microplastics tend to float on the ocean surface and are influenced by wind patterns, this system can help identify areas with high concentrations of plastics, allowing for more effective cleanup efforts.
Satellites that record wind speed can also detect changes in the distribution of microplastics. Through satellite imagery, researchers have observed that plastic pollution in the northern hemisphere’s oceans peaks during the summer months, while in the southern hemisphere, it rises during January and February. This data offers critical insights into seasonal changes in plastic distribution and can guide future cleanup operations.
Researchers have also used satellite data to monitor pollution flowing from rivers, such as those in China’s Yangtze River, and how it affects nearby ocean regions. This type of research can be crucial in understanding how industrial growth and population density contribute to increasing plastic waste.
Satellite Data for Cleanup Efforts
One of the key benefits of satellite-based research is its potential to aid ocean cleanup organizations. By identifying areas with high concentrations of plastic, cleanup operations can be more focused and efficient. These organizations can deploy specialized vessels equipped to collect and recycle plastic debris, significantly reducing waste in targeted regions.
However, the relationship between ocean surface roughness and microplastic concentrations is still under study. While the researchers have observed a pattern, they caution that the link may not always be direct. Other factors, such as surfactants in the water, could also be influencing surface conditions, so more research is needed.
The use of satellite-based systems like CYGNSS is still a developing area of study, and researchers are continuing to improve the accuracy of detecting microplastics and understanding the seasonal variations of their distribution
As of now, the research has shown promising results, but the methodology is still under refinement. The findings have been used to create maps identifying regions with high levels of microplastics. These maps are helping organizations and cleanup efforts focus their resources more efficiently.The use of satellite-based systems like CYGNSS is still a developing area of study, and researchers are continuing to improve the accuracy of detecting microplastics and understanding the seasonal variations of their distribution. Researchers are also working on refining cleanup technologies based on this satellite data to increase their effectiveness in addressing plastic pollution.
Time to Address Ocean Pollution
Plastic pollution is a growing threat, and the time to act is now. Governments, industries, and individuals all have a role to play in reducing plastic waste and preventing further harm to our oceans. Stronger regulations on plastic production and disposal, increased public awareness, and innovation in biodegradable materials are all part of the solution.
As we continue to confront this crisis, it is essential that we understand the full extent of plastic pollution in our oceans, track its impact on marine ecosystems, and work toward sustainable solutions that protect the environment for future generations. The health of our oceans is directly tied to the health of our planet—and it is up to all of us to make a difference.
It’s easy to overlook the plastic waste scattered on our beaches or floating in the ocean. But the reality is clear: plastic pollution is suffocating our oceans and destroying marine life. As we continue to pollute, we risk not only the health of our oceans but also the survival of countless species, including our own. It is time to take action before the waves of plastic drown the beauty of the seas we cherish.
Earth
Life may have learned to breathe oxygen hundreds of millions of years earlier than thought
Early life on Earth has found an interetsing turning point. A new study by researchers at Massachusetts Institute of Technology suggests that some of Earth’s earliest life forms may have evolved the ability to use oxygen hundreds of millions of years before it became a permanent part of the planet’s atmosphere.
Oxygen is essential to most life on Earth today, but it was not always abundant. Scientists have long believed that oxygen only became a stable component of the atmosphere around 2.3 billion years ago, during a turning point known as the Great Oxidation Event (GOE). The new findings indicate that biological use of oxygen may have begun much earlier, potentially reshaping scientists’ understanding of how life evolved on Earth.
The study, published in the journal Palaeogeography, Palaeoclimatology, Palaeoecology, traces the evolutionary origins of a key enzyme that allows organisms to use oxygen for aerobic respiration. This enzyme is present in most oxygen-breathing life forms today, from bacteria to humans.
Scientists have long believed that oxygen only became a stable component of the atmosphere around 2.3 billion years ago, during a turning point known as the Great Oxidation Event (GOE). The new findings indicate that biological use of oxygen may have begun much earlier, potentially reshaping scientists’ understanding of how life evolved on Earth
MIT geobiologists found that the enzyme likely evolved during the Mesoarchean era, between 3.2 and 2.8 billion years ago—several hundred million years before the Great Oxidation Event.
The findings may help answer a long-standing mystery in Earth’s history: why it took so long for oxygen to accumulate in the atmosphere. Scientists know that cyanobacteria, the first organisms capable of producing oxygen through photosynthesis, emerged around 2.9 billion years ago. Yet atmospheric oxygen levels remained low for hundreds of millions of years after their appearance.
While geochemical reactions with rocks were previously thought to be the main reason oxygen failed to build up early on, the MIT study suggests biology itself may also have played a role. Early organisms that evolved the oxygen-using enzyme may have consumed small amounts of oxygen as soon as it was produced, limiting how much could accumulate in the atmosphere.
“This does dramatically change the story of aerobic respiration,” said Fatima Husain, postdoctoral researcher in MIT’s Department of Earth, Atmospheric and Planetary Sciences, said in a media statement. “Our study adds to this very recently emerging story that life may have used oxygen much earlier than previously thought. It shows us how incredibly innovative life is at all periods in Earth’s history.”
The research team analysed thousands of genetic sequences of heme-copper oxygen reductases—enzymes essential for aerobic respiration—across a wide range of modern organisms. By mapping these sequences onto an evolutionary tree and anchoring them with fossil and geological evidence, the researchers were able to estimate when the enzyme first emerged.
“The puzzle pieces are fitting together and really underscore how life was able to diversify and live in this new, oxygenated world
Tracing the enzyme back through time, the team concluded that oxygen use likely appeared soon after cyanobacteria began producing oxygen. Organisms living close to these microbes may have rapidly consumed the oxygen they released, delaying its escape into the atmosphere.
“Considered all together, MIT research has filled in the gaps in our knowledge of how Earth’s oxygenation proceeded,” Husain said. “The puzzle pieces are fitting together and really underscore how life was able to diversify and live in this new, oxygenated world.”
The study adds to a growing body of evidence suggesting that life on Earth adapted to oxygen far earlier than previously believed, offering new insights into how biological innovation shaped the planet’s atmosphere and the evolution of complex life.
Earth
The Heat Trap: How Climate Change Is Pushing Extreme Weather Into New Parts of the World
MIT scientists say a hidden feature of the atmosphere is allowing dangerous humid heat to build up in parts of the world that were once considered climatically mild — setting the stage for longer heat waves and more violent storms.
For decades, long spells of suffocating heat followed by explosive thunderstorms were largely confined to the tropics. But that pattern is now spreading into the planet’s midlatitudes, and researchers at the Massachusetts Institute of Technology believe they know why.
In a new study published in Science Advances, MIT scientists have identified atmospheric inversions — layers of warm air sitting over cooler air near the ground — as a critical factor controlling how hot, humid, and storm-prone a region can become. Their findings suggest that parts of the United States and East Asia could face unfamiliar and dangerous combinations of oppressive heat and extreme rainfall as the climate continues to warm.
Inversions are already notorious for trapping air pollution close to the ground. The MIT team now shows they also act like thermal lids, allowing heat and moisture to accumulate near the surface for days at a time. The longer an inversion persists, the more unbearable the humid heat becomes. And when that lid finally breaks, the stored energy can be released violently, fuelling intense thunderstorms and heavy downpours.
“Our analysis shows that the eastern and midwestern regions of U.S. and the eastern Asian regions may be new hotspots for humid heat in the future climate,” said Funing Li, a postdoctoral researcher in MIT’s Department of Earth, Atmospheric and Planetary Sciences, in a media statement.
The mechanism is especially important in midlatitude regions, where inversions are common. In the US, areas east of the Rocky Mountains frequently experience warm air aloft flowing over cooler surface air — a configuration that can linger and intensify under climate change.
“As the climate warms, theoretically the atmosphere will be able to hold more moisture,” said Talia Tamarin-Brodsky, an assistant professor at MIT and co-author of the study, in a media statement. “Which is why new regions in the midlatitudes could experience moist heat waves that will cause stress that they weren’t used to before.”
Why heat doesn’t always break
Under normal conditions, rising surface temperatures trigger convection: warm air rises, cool air sinks, clouds form, and storms develop that can eventually cool things down. But the researchers approached the problem differently, asking what actually limits how much heat and moisture can build up before convection begins.
By analysing the total energy of air near the surface — combining both dry heat and moisture — they found that inversions dramatically raise that limit. When warm air caps cooler air below, surface air must accumulate far more energy before it can rise through the barrier. The stronger and more stable the inversion, the more extreme the heat and humidity must become.
“This increasing inversion has two effects: more severe humid heat waves, and less frequent but more extreme convective storms,” Tamarin-Brodsky said.
A Midwest warning sign
Inversions can form overnight, when the ground cools rapidly, or when cool marine air slides under warmer air inland. But in the central United States, geography plays a key role.
“The Great Plains and the Midwest have had many inversions historically due to the Rocky Mountains,” Li said in a media statement. “The mountains act as an efficient elevated heat source, and westerly winds carry this relatively warm air downstream into the central and midwestern U.S., where it can help create a persistent temperature inversion that caps colder air near the surface.”
As global warming strengthens and stabilises these atmospheric layers, the researchers warn that regions like the Midwest may be pushed toward climate extremes once associated with far warmer parts of the world.
“In a future climate for the Midwest, they may experience both more severe thunderstorms and more extreme humid heat waves,” Tamarin-Brodsky said in a media statement. “Our theory gives an understanding of the limit for humid heat and severe convection for these communities that will be future heat wave and thunderstorm hotspots.”
The study offers climate scientists a new way to assess regional risk — and a stark reminder that climate change is not just intensifying known hazards, but exporting them to places unprepared for their consequences.
Climate
Climate Extremes in 2025 Exposed Inequality and the Limits of Adaptation, Scientists Warn
2025 Wasn’t Just Hot — It Pushed the World to the Edge of Climate Survival
Extreme weather events intensified across the globe in 2025, disproportionately impacting vulnerable communities and pushing many regions close to the limits of adaptation, according to the latest annual report by World Weather Attribution (WWA). Despite the absence of a strong El Niño, global temperatures remained exceptionally high, making 2025 one of the hottest years on record and underscoring the growing influence of human-induced climate change.
The report, Unequal Evidence and Impacts, Limits to Adaptation: Extreme Weather in 2025, analysed 22 major extreme weather events in depth, selected from 157 climate disasters that met humanitarian impact thresholds worldwide. Floods and heatwaves were the most frequent, with 49 events each, followed by storms (38), wildfires (11), droughts (7) and cold spells (3).
Although 2025 occurred under weak La Niña conditions—typically associated with cooler global temperatures—the three-year global temperature average crossed the 1.5°C warming threshold for the first time. Scientists attribute this persistent heat to rising greenhouse gas emissions, which continue to override natural climate variability.
“Each year, the risks of climate change become less hypothetical and more brutal reality,” said Friederike Otto, Professor of Climate Science at Imperial College London and co-founder of World Weather Attribution, in a statement. “Our report shows that despite efforts to cut carbon emissions, they have fallen short in preventing global temperature rise and the worst impacts. Decision-makers must face the reality that their continued reliance on fossil fuels is costing lives, billions in economic losses, and causing irreversible damage to communities worldwide”
Heatwaves: the deadliest disaster of 2025
Heatwaves emerged as the deadliest extreme weather event of the year. In Europe alone, an estimated 24,400 people died during a single summer heatwave between June and August, across 854 cities representing nearly 30% of the continent’s population.
In South Sudan, human-induced climate change made a February heatwave 4°C hotter than it would have been in a pre-industrial climate, turning what was once a rare event into one expected every two years. Schools were closed nationwide after dozens of children collapsed from heat exhaustion, highlighting how extreme heat disrupts education and deepens gender and social inequalities.
Floods, storms and data gaps in the Global South
Floods were the most frequently triggered hazard studied by WWA in 2025, with devastating impacts reported in Pakistan, Sri Lanka, Indonesia, Botswana and the Mississippi River Basin. However, nearly one-quarter of attribution studies remained inconclusive, largely due to poor weather data and limitations in climate models, particularly in the Global South.
This uneven scientific evidence mirrors broader climate injustice. Many regions experiencing the most severe impacts lack dense weather station networks, making it difficult to quantify the role of climate change precisely—even when human suffering is evident.
Wildfires and storms pushed adaptation limits
The report also documented record-breaking wildfires, including the most economically destructive fires in modern US history in Los Angeles, which caused an estimated $30 billion in insured losses and were linked to around 400 deaths. Climate change increased the likelihood of extreme fire weather by 35%, driven by hotter, drier, and windier conditions.
Tropical cyclones further illustrated the limits of adaptation. Hurricane Melissa, which struck the Caribbean, produced rainfall intensities at least 9% higher due to climate change. While early warnings and evacuations in Jamaica and Cuba saved lives, the storm still caused widespread damage, demonstrating that preparedness alone cannot fully offset intensifying extremes
A new era of dangerous extremes
“2025 showed us that we are now in a persistent new era of dangerous, extreme weather,” said Theodore Keeping, researcher at Imperial College London, in a statement. “The evidence of the severe, real impacts of climate change are more clear than ever, and it is essential that action is taken to stop fossil fuel emissions, and to help the world’s most vulnerable prepare for the devastating impacts of increasingly extreme weather.”
Echoing this concern, Sjoukje Philip, researcher at the Royal Netherlands Meteorological Institute (KNMI), noted in a statement that natural climate variability alone cannot explain the year’s extreme heat. “The continuous rise in greenhouse gas emissions has pushed our climate into a new, more extreme state, where even small increases in global temperatures now trigger disproportionately severe impacts”
Emissions cuts are non-negotiable
While the report emphasises the importance of adaptation—such as early warning systems, urban planning, and ecosystem restoration—it concludes that rapid and deep reductions in fossil fuel emissions remain essential to avoid the worst climate impacts.
As the WWA scientists warn, without decisive global action, extreme weather events like those seen in 2025 will no longer be exceptions, but the defining feature of a warming world.
-
Society1 month agoThe Ten-Rupee Doctor Who Sparked a Health Revolution in Kerala’s Tribal Highlands
-
COP303 months agoBrazil Cuts Emissions by 17% in 2024—Biggest Drop in 16 Years, Yet Paris Target Out of Reach
-
Earth3 months agoData Becomes the New Oil: IEA Says AI Boom Driving Global Power Demand
-
COP303 months agoCorporate Capture: Fossil Fuel Lobbyists at COP30 Hit Record High, Outnumbering Delegates from Climate-Vulnerable Nations
-
Society2 months agoFrom Qubits to Folk Puppetry: India’s Biggest Quantum Science Communication Conclave Wraps Up in Ahmedabad
-
Women In Science4 months agoThe Data Don’t Lie: Women Are Still Missing from Science — But Why?
-
Space & Physics2 months agoIndian Physicists Win 2025 ICTP Prize for Breakthroughs in Quantum Many-Body Physics
-
Health3 months agoAir Pollution Claimed 1.7 Million Indian Lives and 9.5% of GDP, Finds The Lancet


