Health
New Surgical Robotic System Set to Transform the Future of Surgery and Patient Care
The University of the Free State (UFS) and the Free State Department of Health mark a transformative moment in healthcare with the launch of the Versius Surgical Robotic System – the first of its kind in Southern Africa.

The University of the Free State (UFS) and the Free State Department of Health are not just introducing new technology, but embarking on a journey that will revolutionize surgery and patient care in the region. This is the message delivered by MaQueen Letsoha-Mathae, Premier of the Free State, during the official launch of the Versius Surgical Robotic System on 11 March 2025 at the UFS Faculty of Health Sciences. The Free State is now the first region in Southern Africa to implement this technology, having successfully completed nine robotic-assisted surgeries at Universitas Academic Hospital within the last month.
The successful procedures, which took place between 24 February and 6 March, included complex surgeries such as radical prostatectomies and cholecystectomies, demonstrating the Versius system’s potential to improve patient outcomes. Prof Freddie Claassen, Academic Head of the Department of Urology at UFS and Universitas Hospital, was among the first surgeons from the university to be trained on the system and use it in operations.
A Significant Milestone
“This moment marks a significant milestone not only for our beloved Free State, but for the entire health-care landscape in Southern Africa. We are not merely launching a new technology; we are embarking on a journey that will transform the future of surgery and patient care in our province and beyond,” said Letsoha-Mathae.
She emphasized that the introduction of the Versius Surgical Robotic System aligns with the Free State’s vision to become a hub of healthcare innovation and excellence in Southern Africa. “With this groundbreaking system, we are not only enhancing surgical precision, but also significantly improving patient outcomes,” Letsoha-Mathae added.
The Versius Surgical Robotic System is known for its versatility and adaptability, seamlessly integrating into any operating room. It can be used in high-specialty procedures, including thoracic, colorectal, general and upper gastrointestinal, hernia, gynaecology, and urology surgeries.
Prof Hester C. Klopper, Vice-Chancellor and Principal of UFS, reflected on the role of the university in shaping the future of healthcare. “This moment is not just a technological milestone, but a symbol of what we can achieve as an institution when we unite academic excellence, visionary leadership, and a commitment to community impact with partners in the private sector and government,” she said.
She stressed that the launch reaffirms UFS’s ongoing dedication to academic excellence, technological innovation, and societal impact, while addressing some of the most pressing healthcare challenges both regionally and globally. “Versius is an investment in the well-being of our communities and an essential step towards bridging the healthcare gap in our region,” said Prof Klopper.
Enhancing Surgical Precision
Prof Vasu Reddy, Deputy Vice-Chancellor of Research and Internationalisation at UFS, explained the significant benefits of robotic-assisted surgeries. “Robots such as the Versius system are tools that enhance the senses and skills of surgeons during delicate operations. Unlike traditional surgery, which requires large incisions, robotic surgery enables doctors to perform operations with smaller cuts, reduced pain, and less scarring,” he said.
Robotic surgery improves surgical outcomes by allowing for greater precision, accuracy, and reduced chances of complications. “The robots do not tire, they do not lose focus, and they can handle repetitive tasks with ease, making the entire process safer for patients,” Prof Reddy continued. He further highlighted the role of AI and robotics in healthcare, emphasizing that human innovation and machine precision together can elevate the standard of care.
According to Premier Letsoha-Mathae, the Versius Surgical Robotic System represents a significant leap towards enhancing healthcare delivery in Southern Africa. “The benefits of Versius are profound: patients will experience quicker recoveries and an earlier return to work, ultimately leading to a healthier, more productive society,” she said.
The system’s modular and scalable design ensures that it can be integrated into operating rooms with minimal infrastructure changes, making it accessible across both private and state healthcare sectors. This adaptability promises to expand access to robotic-assisted surgery, helping to bridge the gap in healthcare delivery.
Through the collaboration between the Department of Health and UFS, the launch of the Versius Surgical Robotic System is a testament to the shared commitment to addressing regional and global healthcare challenges. It also underscores the importance of continuing innovation and academic excellence in advancing healthcare technology and patient care.
Health
Researchers Develop Low-Cost Sensor for Real-Time Detection of Toxic Sulfur Dioxide Gas
Sulfur dioxide, a toxic air pollutant primarily released from vehicle exhaust and industrial processes, is notorious for triggering respiratory irritation, asthma attacks, and long-term lung damage.

In a significant breakthrough for environmental monitoring and public health, scientists from the Centre for Nano and Soft Matter Sciences (CeNS), Bengaluru, India, have developed an affordable and highly sensitive sensor capable of detecting sulfur dioxide (SO₂) gas at extremely low concentrations.
Sulfur dioxide, a toxic air pollutant primarily released from vehicle exhaust and industrial processes, is notorious for triggering respiratory irritation, asthma attacks, and long-term lung damage. Monitoring its presence in real time is essential, but existing technologies are often expensive, power-hungry, or ineffective at detecting the gas at trace levels.
To address this gap, the CeNS team, under the leadership of Dr. S. Angappane, has engineered a novel sensor by combining two metal oxides — nickel oxide (NiO) and neodymium nickelate (NdNiO₃). NiO serves as the receptor that captures SO₂ molecules, while NdNiO₃ acts as a transducer that converts the chemical interaction into an electrical signal. This innovative design enables the sensor to detect SO₂ at concentrations as low as 320 parts per billion (ppb), outperforming many commercial alternatives.
Speaking about the development, Dr. Angappane said in a media statement, “This sensor system not only advances the sensitivity benchmark but also brings real-time gas monitoring within reach for a wider range of users. It demonstrates how smart materials can provide practical solutions for real-world environmental challenges.”

The CeNS team has also built a portable prototype incorporating the sensor. It features a user-friendly threshold-triggered alert system with color-coded indicators: green for safe levels, yellow for warning, and red for danger. This visual approach ensures that even non-specialist users can understand and respond to pollution risks instantly. Its compact size and lightweight design make it ideal for deployment in industrial zones, urban neighborhoods, and enclosed environments requiring continuous air quality surveillance.
The sensor system was conceptualized and designed by Mr. Vishnu G Nath, with key contributions from Dr. Shalini Tomar, Mr. Nikhil N. Rao, Dr. Muhammed Safeer Naduvil Kovilakath, Dr. Neena S. John, Dr. Satadeep Bhattacharjee, and Prof. Seung-Cheol Lee. The research findings were recently published in the journal Small.
With this innovation, CeNS reinforces the role of advanced materials science in developing cost-effective technologies that protect both public health and the environment.
Health
Researchers Unveil 50-Cent DNA Sensors That Could Revolutionize Disease Diagnosis
The innovation lies in a low-cost electrochemical sensor stabilized with a polymer coating, which allows the device to be stored for months at high temperatures and used far from traditional lab settings

In a breakthrough that could make life-saving diagnostics accessible to millions, MIT researchers have developed a disposable, DNA-coated sensor capable of detecting diseases like cancer, HIV, and influenza — all for just 50 cents. The innovation lies in a low-cost electrochemical sensor stabilized with a polymer coating, which allows the device to be stored for months at high temperatures and used far from traditional lab settings.
At the heart of this sensor is a CRISPR-based enzyme system. When the sensor detects a target disease gene, the enzyme — acting like a molecular lawnmower — begins to shred DNA on the electrode, disrupting the electric signal and indicating a positive result.
“Our focus is on diagnostics that many people have limited access to, and our goal is to create a point-of-use sensor,” said Ariel Furst, MIT chemical engineering professor and senior author of the study, in a media statement. “People wouldn’t even need to be in a clinic to use it. You could do it at home.”
Previously, such sensors faced a major hurdle: the DNA coating degraded rapidly, requiring immediate use and refrigerated storage. Furst’s team overcame this by using polyvinyl alcohol (PVA) — a cheap and widely available polymer — to form a protective film over the DNA, significantly extending shelf life.
The sensors were tested to successfully detect PCA3, a prostate cancer biomarker found in urine, even after two months of storage at 150°F. The technology builds on Furst’s earlier work that enabled detection of HIV and HPV genetic material using similar CRISPR-based methods.
“This is the same core technology used in glucose meters, but adapted with programmable DNA,” said lead author Xingcheng Zhou, an MIT graduate student. “It’s inexpensive, portable, and extremely versatile.”
The team now aims to expand testing for other infectious and emerging diseases. They’ve been accepted into MIT’s delta v venture accelerator, signaling commercial interest and real-world application potential. The ability to ship sensors without refrigeration could be transformative for low-resource and remote settings.
“Our limitation before was that we had to make the sensors on site,” added Furst. “Now that we can protect them, we can ship them. That allows us to access a lot more rugged or non-ideal environments for testing.”
With further development, these pocket-sized DNA sensors could redefine early disease detection — from rural clinics to living rooms.
Health
Teak Leaf Extract Emerges as Eco-Friendly Shield Against Harmful Laser Rays
Raman Research Institute scientists unlock sustainable alternative for laser safety in line with green tech goals

In a significant step toward sustainable photonic technologies, scientists from the Raman Research Institute (RRI), an autonomous institute under the Department of Science and Technology (DST), Government of India, have discovered that teak leaf extract can serve as an effective, natural shield against harmful laser radiation. This breakthrough offers new potential for protecting both sensitive optical sensors and human eyes from high-intensity lasers used in medical, industrial, and defense applications.
The team has found that the otherwise discarded leaves of the teak tree (Tectona grandis L.f) are rich in anthocyanins, natural pigments responsible for their reddish-brown colour. When exposed to light, these pigments exhibit nonlinear optical (NLO) properties, allowing them to absorb intense laser beams—a key feature required for laser safety gear.
The discovery, recently published in the Journal of Photochemistry and Photobiology A: Chemistry, proposes a non-toxic, biodegradable, and cost-effective alternative to conventional synthetic materials like graphene and metal nanoparticles, which are often expensive and environmentally hazardous.
“Teak leaves are a rich source of natural pigments such as anthocyanin… We explored the potential of teak leaf extract as an eco-friendly alternative to synthetic dyes in the field of nonlinear optics,” said Beryl C, DST Women Scientist at RRI, in a media statement issued by the government.
To extract this natural dye, researchers dried and powdered teak leaves, soaked them in solvents, and processed the mixture using ultrasonication and centrifugation. The resulting reddish-brown liquid was then tested with green laser beams under continuous and pulsed conditions.
Using advanced techniques like Z-scan and Spatial Self-Phase Modulation (SSPM), the dye demonstrated reverse saturable absorption (RSA)—a rare and desirable trait where the material absorbs more light as the intensity increases, effectively acting as a self-regulating shield against laser exposure.
This development is particularly crucial as laser technologies become increasingly prevalent in everyday environments—from surgical devices and industrial cutters to military-grade systems. By offering a natural and renewable solution to a global safety challenge, the RRI team has opened the door to a future of eco-conscious optical safety equipment, such as laser-resistant eyewear, coatings, and sensor shields.
Researchers also indicated that further studies will focus on enhancing the stability and commercial usability of the dye for long-term deployment.
This innovation aligns with the principles of Industry 5.0, emphasizing human-centered and environmentally responsible technology, and showcases how indigenous, sustainable resources can play a pivotal role in global tech solutions.
-
Society4 months ago
Starliner crew challenge rhetoric, says they were never “stranded”
-
Space & Physics3 months ago
Could dark energy be a trick played by time?
-
Earth5 months ago
How IIT Kanpur is Paving the Way for a Solar-Powered Future in India’s Energy Transition
-
Space & Physics3 months ago
Sunita Williams aged less in space due to time dilation
-
Learning & Teaching5 months ago
Canine Cognitive Abilities: Memory, Intelligence, and Human Interaction
-
Women In Science4 months ago
Neena Gupta: Shaping the Future of Algebraic Geometry
-
Society5 months ago
Sustainable Farming: The Microgreens Model from Kerala, South India
-
Earth3 months ago
122 Forests, 3.2 Million Trees: How One Man Built the World’s Largest Miyawaki Forest