Health
Study Reveals Essential Genes That Help Tuberculosis Survive Airborne Transmission
Tuberculosis is a respiratory disease caused by Mycobacterium tuberculosis, a bacterium that predominantly affects the lungs and spreads through droplets released by an infected person

Tuberculosis thrives in the lungs, but when the bacteria causing the disease are expelled into the air, they face a much harsher environment with drastic changes in pH and chemistry. Understanding how these bacteria survive this airborne journey is essential for their persistence, yet little is known about the mechanisms that protect them as they move from one host to another.
Now, MIT researchers and their collaborators have identified a family of genes that are crucial for the bacterium’s survival specifically when exposed to the air, likely offering protection during its transmission.
Previously, many of these genes were thought to be nonessential, as they didn’t appear to affect the bacteria’s role in causing disease when introduced into a host. This new study, however, suggests that these genes are vital for transmission rather than proliferation.
“There is a blind spot in our understanding of airborne transmission, especially regarding how a pathogen survives sudden environmental changes as it circulates in the air,” says Lydia Bourouiba, head of the Fluid Dynamics of Disease Transmission Laboratory, associate professor of civil and environmental engineering, mechanical engineering, and core faculty member at MIT’s Institute for Medical Engineering and Science. “Now, through these genes, we have an insight into the tools tuberculosis uses to protect itself.”
The team’s findings, published this week in Proceedings of the National Academy of Sciences, could lead to new tuberculosis therapies that target both infection and transmission prevention.
“If a drug targeted the products of these genes, it could effectively treat an individual and, even before that person is cured, prevent the infection from spreading,” says Carl Nathan, chair of the Department of Microbiology and Immunology and the R.A. Rees Pritchett Professor of Microbiology at Weill Cornell Medicine.
Nathan and Bourouiba co-senior authored the study, which includes MIT collaborators and Bourouiba’s mentees from the Fluids and Health Network: co-lead author postdoc Xiaoyi Hu, postdoc Eric Shen, and students Robin Jahn and Luc Geurts. The research also involved collaborators from Weill Cornell Medicine, the University of California at San Diego, Rockefeller University, Hackensack Meridian Health, and the University of Washington.
Pathogen’s Perspective
Tuberculosis is a respiratory disease caused by Mycobacterium tuberculosis, a bacterium that predominantly affects the lungs and spreads through droplets released by an infected person, typically when they cough or sneeze. Tuberculosis remains the leading cause of death from infection, except during global viral pandemics.
“In the last century, we’ve seen the 1918 influenza pandemic, the 1981 HIV/AIDS epidemic, and the 2019 SARS-CoV-2 pandemic,” notes Nathan. “Each virus has caused significant loss of life, but after they subsided, we were left with the ‘permanent pandemic’ of tuberculosis.”
Much of the research on tuberculosis focuses on its pathophysiology—how the bacteria infect a host—along with diagnostic and treatment methods. For their new study, Nathan and Bourouiba turned their attention to tuberculosis transmission, specifically exploring how the bacteria defend themselves during airborne transmission.
“This is one of the first efforts to study tuberculosis from an airborne perspective, investigating how the organism survives harsh changes in the environment during transmission,” says Bourouiba.
Critical Defense
At MIT, Bourouiba studies fluid dynamics and how droplet behaviors can spread particles and pathogens. She partnered with Nathan, who investigates tuberculosis and the genes that the bacteria rely on throughout their life cycle.
To explore how tuberculosis survives in the air, the team aimed to replicate the conditions the bacterium encounters during transmission. They first worked to develop a fluid with similar viscosity and droplet sizes to those expelled by a person coughing or sneezing. Bourouiba points out that previous research on tuberculosis relied on liquid solutions that are used to grow the bacteria. However, these liquids differ significantly from the fluids tuberculosis patients expel.
Furthermore, the fluid typically sampled from tuberculosis patients, like sputum for diagnostic tests, is thick and sticky, which makes it inefficient at spreading and forming inhalable droplets. “It’s too gooey to break into inhalable droplets,” Bourouiba explains.
Through her research on fluid and droplet physics, the team determined a more accurate viscosity and droplet size distribution for tuberculosis-laden microdroplets in the air. They also analyzed the composition of droplets by studying infected lung tissue samples. They then created a fluid that mimicked the viscosity, surface tension, and droplet size that would be released into the air when a person exhales.
Next, the team deposited different fluid mixtures onto plates as tiny droplets, measuring how they evaporated and what structures they left behind. They discovered that the new fluid shielded the bacteria at the center of the droplet, unlike traditional fluids where bacteria were more exposed to the air. The realistic fluid also retained more water.
The team then infused the droplets with bacteria carrying genes with various knockdowns to see how the absence of specific genes affected bacterial survival during evaporation.
They evaluated over 4,000 tuberculosis genes and identified a family of genes that became crucial in airborne conditions. Many of these genes are involved in repairing damage to oxidized proteins, such as those exposed to air, while others are responsible for breaking down irreparably damaged proteins.
“What we found is a lengthy list of candidate genes, some more prominently involved than others, that could play a critical role in helping tuberculosis survive during transmission,” Nathan says.
While the experiments cannot fully replicate the bacteria’s biophysical transmission (as droplets fly through the air and evaporate), the team mimicked these conditions by placing plates in a dry chamber to accelerate droplet evaporation, similar to what happens in flight.
Going forward, the researchers are developing platforms to study droplets in flight under various conditions. They plan to further investigate the role of the newly identified genes in more realistic experiments, potentially weakening tuberculosis’s airborne defenses.
“The idea of waiting to diagnose and treat someone with tuberculosis is an inefficient way to stop the pandemic,” Nathan says. “Most individuals who exhale tuberculosis haven’t been diagnosed yet, so we need to interrupt its transmission. Understanding the process is key, and now we have some ideas.”
Health
Researchers Develop Low-Cost Sensor for Real-Time Detection of Toxic Sulfur Dioxide Gas
Sulfur dioxide, a toxic air pollutant primarily released from vehicle exhaust and industrial processes, is notorious for triggering respiratory irritation, asthma attacks, and long-term lung damage.

In a significant breakthrough for environmental monitoring and public health, scientists from the Centre for Nano and Soft Matter Sciences (CeNS), Bengaluru, India, have developed an affordable and highly sensitive sensor capable of detecting sulfur dioxide (SO₂) gas at extremely low concentrations.
Sulfur dioxide, a toxic air pollutant primarily released from vehicle exhaust and industrial processes, is notorious for triggering respiratory irritation, asthma attacks, and long-term lung damage. Monitoring its presence in real time is essential, but existing technologies are often expensive, power-hungry, or ineffective at detecting the gas at trace levels.
To address this gap, the CeNS team, under the leadership of Dr. S. Angappane, has engineered a novel sensor by combining two metal oxides — nickel oxide (NiO) and neodymium nickelate (NdNiO₃). NiO serves as the receptor that captures SO₂ molecules, while NdNiO₃ acts as a transducer that converts the chemical interaction into an electrical signal. This innovative design enables the sensor to detect SO₂ at concentrations as low as 320 parts per billion (ppb), outperforming many commercial alternatives.
Speaking about the development, Dr. Angappane said in a media statement, “This sensor system not only advances the sensitivity benchmark but also brings real-time gas monitoring within reach for a wider range of users. It demonstrates how smart materials can provide practical solutions for real-world environmental challenges.”

The CeNS team has also built a portable prototype incorporating the sensor. It features a user-friendly threshold-triggered alert system with color-coded indicators: green for safe levels, yellow for warning, and red for danger. This visual approach ensures that even non-specialist users can understand and respond to pollution risks instantly. Its compact size and lightweight design make it ideal for deployment in industrial zones, urban neighborhoods, and enclosed environments requiring continuous air quality surveillance.
The sensor system was conceptualized and designed by Mr. Vishnu G Nath, with key contributions from Dr. Shalini Tomar, Mr. Nikhil N. Rao, Dr. Muhammed Safeer Naduvil Kovilakath, Dr. Neena S. John, Dr. Satadeep Bhattacharjee, and Prof. Seung-Cheol Lee. The research findings were recently published in the journal Small.
With this innovation, CeNS reinforces the role of advanced materials science in developing cost-effective technologies that protect both public health and the environment.
Health
Researchers Unveil 50-Cent DNA Sensors That Could Revolutionize Disease Diagnosis
The innovation lies in a low-cost electrochemical sensor stabilized with a polymer coating, which allows the device to be stored for months at high temperatures and used far from traditional lab settings

In a breakthrough that could make life-saving diagnostics accessible to millions, MIT researchers have developed a disposable, DNA-coated sensor capable of detecting diseases like cancer, HIV, and influenza — all for just 50 cents. The innovation lies in a low-cost electrochemical sensor stabilized with a polymer coating, which allows the device to be stored for months at high temperatures and used far from traditional lab settings.
At the heart of this sensor is a CRISPR-based enzyme system. When the sensor detects a target disease gene, the enzyme — acting like a molecular lawnmower — begins to shred DNA on the electrode, disrupting the electric signal and indicating a positive result.
“Our focus is on diagnostics that many people have limited access to, and our goal is to create a point-of-use sensor,” said Ariel Furst, MIT chemical engineering professor and senior author of the study, in a media statement. “People wouldn’t even need to be in a clinic to use it. You could do it at home.”
Previously, such sensors faced a major hurdle: the DNA coating degraded rapidly, requiring immediate use and refrigerated storage. Furst’s team overcame this by using polyvinyl alcohol (PVA) — a cheap and widely available polymer — to form a protective film over the DNA, significantly extending shelf life.
The sensors were tested to successfully detect PCA3, a prostate cancer biomarker found in urine, even after two months of storage at 150°F. The technology builds on Furst’s earlier work that enabled detection of HIV and HPV genetic material using similar CRISPR-based methods.
“This is the same core technology used in glucose meters, but adapted with programmable DNA,” said lead author Xingcheng Zhou, an MIT graduate student. “It’s inexpensive, portable, and extremely versatile.”
The team now aims to expand testing for other infectious and emerging diseases. They’ve been accepted into MIT’s delta v venture accelerator, signaling commercial interest and real-world application potential. The ability to ship sensors without refrigeration could be transformative for low-resource and remote settings.
“Our limitation before was that we had to make the sensors on site,” added Furst. “Now that we can protect them, we can ship them. That allows us to access a lot more rugged or non-ideal environments for testing.”
With further development, these pocket-sized DNA sensors could redefine early disease detection — from rural clinics to living rooms.
Health
Teak Leaf Extract Emerges as Eco-Friendly Shield Against Harmful Laser Rays
Raman Research Institute scientists unlock sustainable alternative for laser safety in line with green tech goals

In a significant step toward sustainable photonic technologies, scientists from the Raman Research Institute (RRI), an autonomous institute under the Department of Science and Technology (DST), Government of India, have discovered that teak leaf extract can serve as an effective, natural shield against harmful laser radiation. This breakthrough offers new potential for protecting both sensitive optical sensors and human eyes from high-intensity lasers used in medical, industrial, and defense applications.
The team has found that the otherwise discarded leaves of the teak tree (Tectona grandis L.f) are rich in anthocyanins, natural pigments responsible for their reddish-brown colour. When exposed to light, these pigments exhibit nonlinear optical (NLO) properties, allowing them to absorb intense laser beams—a key feature required for laser safety gear.
The discovery, recently published in the Journal of Photochemistry and Photobiology A: Chemistry, proposes a non-toxic, biodegradable, and cost-effective alternative to conventional synthetic materials like graphene and metal nanoparticles, which are often expensive and environmentally hazardous.
“Teak leaves are a rich source of natural pigments such as anthocyanin… We explored the potential of teak leaf extract as an eco-friendly alternative to synthetic dyes in the field of nonlinear optics,” said Beryl C, DST Women Scientist at RRI, in a media statement issued by the government.
To extract this natural dye, researchers dried and powdered teak leaves, soaked them in solvents, and processed the mixture using ultrasonication and centrifugation. The resulting reddish-brown liquid was then tested with green laser beams under continuous and pulsed conditions.
Using advanced techniques like Z-scan and Spatial Self-Phase Modulation (SSPM), the dye demonstrated reverse saturable absorption (RSA)—a rare and desirable trait where the material absorbs more light as the intensity increases, effectively acting as a self-regulating shield against laser exposure.
This development is particularly crucial as laser technologies become increasingly prevalent in everyday environments—from surgical devices and industrial cutters to military-grade systems. By offering a natural and renewable solution to a global safety challenge, the RRI team has opened the door to a future of eco-conscious optical safety equipment, such as laser-resistant eyewear, coatings, and sensor shields.
Researchers also indicated that further studies will focus on enhancing the stability and commercial usability of the dye for long-term deployment.
This innovation aligns with the principles of Industry 5.0, emphasizing human-centered and environmentally responsible technology, and showcases how indigenous, sustainable resources can play a pivotal role in global tech solutions.
-
Society4 months ago
Starliner crew challenge rhetoric, says they were never “stranded”
-
Space & Physics3 months ago
Could dark energy be a trick played by time?
-
Earth5 months ago
How IIT Kanpur is Paving the Way for a Solar-Powered Future in India’s Energy Transition
-
Space & Physics3 months ago
Sunita Williams aged less in space due to time dilation
-
Learning & Teaching5 months ago
Canine Cognitive Abilities: Memory, Intelligence, and Human Interaction
-
Women In Science4 months ago
Neena Gupta: Shaping the Future of Algebraic Geometry
-
Society5 months ago
Sustainable Farming: The Microgreens Model from Kerala, South India
-
Earth3 months ago
122 Forests, 3.2 Million Trees: How One Man Built the World’s Largest Miyawaki Forest