

Earth
The wildfires, floods, and heatwaves: Understanding the science behind climate change
The stories we tell today will define the world that future generations inherit. Will they look back and see a world that acted in time, or a world that failed to change until it was too late?
In the heart of the Amazon rainforest, one of the most biodiverse places on Earth, a massive wildfire raged through the thick, lush greenery. This wasn’t just any fire; it was a calamity that consumed more than 17 million animals in its path, a chilling reminder of how the destruction of nature can reverberate across ecosystems. The Amazon, often referred to as the “lungs of the Earth,” plays a pivotal role in managing the planet’s climate. Yet, the actions of humanity—deforestation, illegal logging, and deliberate fires for agricultural purposes—have not only caused immeasurable loss to wildlife but have also accelerated climate change. The forest’s destruction led to a dangerous feedback loop, intensifying global weather patterns in ways that humans had never anticipated.
Fast forward to 2018, and the monsoon rains that battered Kerala, a state in India, were an equally dire omen. What began as an ordinary August downpour escalated into one of the deadliest floods in the region in almost a century. Rivers overflowed, breaking through dams and inundating vast swathes of land. Entire towns were submerged. Hundreds of lives were lost, and the devastation reached far beyond the physical damage, triggering social and economic upheaval. The aftermath left thousands homeless, as people sought refuge in makeshift shelters. The floods in Kerala were not an isolated incident; in fact, they were a warning from nature, signaling a world grappling with extreme weather events, made worse by human-induced climate change. The same was the case with 2024 Wayanad landslides.
And this global pattern of violent weather doesn’t stop in the tropics. In recent years, a blistering heatwave has swept across parts of North America. The US and Canada, known for their cold winters, have experienced record-breaking summer temperatures, an anomaly that scientists have linked directly to climate change. Oregon, once known for its temperate weather, saw the largest wildfire in its history, spurred by the heatwave. This was not just a local disaster—it was part of a larger, worrying trend in which global warming is creating the conditions for wildfires, floods, and heatwaves to proliferate at an unprecedented rate.
Climate change refers to significant, long-term shifts in weather patterns and temperatures.
These are not just isolated incidents. They are signs of a planet in distress, a planet experiencing the devastating effects of climate change, a phenomenon that is rapidly altering our environment and our lives.
The Science Behind the Crisis
Climate change refers to significant, long-term shifts in weather patterns and temperatures. These changes can manifest in a variety of ways: from prolonged droughts and unseasonal rains to extreme heatwaves and hurricanes. The root cause of today’s accelerated climate change is primarily human activity, particularly the burning of fossil fuels, deforestation, and industrial emissions, which release greenhouse gases like carbon dioxide into the atmosphere.
The Earth’s climate has always undergone natural variations—shifting from ice ages to warmer periods over millennia. However, what we are witnessing today is a much more rapid and intense change, driven by human actions. According to scientists, the Earth’s average temperature has risen by approximately 1.1°C since the late 19th century, with the past few decades seeing a rate of warming unprecedented in the geological record. The current trajectory suggests that global temperatures could rise by another 1-2°C by the end of the century, which would have catastrophic implications for both human and natural systems.
The impacts of this warming are already being felt globally. Melting ice caps and glaciers, rising sea levels, shifting weather patterns, and more frequent extreme weather events are some of the most visible signs. The Amazon rainforest, which once functioned as a massive carbon sink, is now a source of carbon emissions due to deforestation and wildfires. Meanwhile, heatwaves in parts of Europe and North America have reached previously unimaginable levels, set new temperature records and causing widespread harm.
A Global Phenomenon: From Kerala to Oregon
The devastating Kerala floods of 2018 were preceded by a series of warnings. The state’s weather patterns had been shifting, with increasingly unpredictable rainfall, leading to swollen rivers and the overflowing of dams. Once a relatively regular occurrence, floods in Kerala became more intense and frequent over time. Experts argue that climate change, through the intensification of the monsoon season and rising sea levels, has exacerbated the situation. But Kerala is not alone. Across the world, regions that were once resilient to extreme weather are now facing unprecedented levels of flooding, wildfires, and other disasters.

In 2020, when a record heatwave struck North America, temperatures in the Pacific Northwest soared to levels never seen before. Oregon, a state known for its temperate climate, reported its highest-ever temperatures. This heatwave triggered wildfires that devastated millions of acres of forest and caused significant loss of life. The fires were not simply a result of hot weather, but of the conditions created by climate change—dry forests, extreme heat, and shifting weather patterns all came together to fuel the fires.
Similarly, across the Atlantic, parts of Europe experienced an unusually harsh summer, with wildfires ravaging Spain, Portugal, and southern France. These fires were not natural events but were made more intense by the warming climate. Even in regions like Siberia, where wildfires were once rare, extreme temperatures and dry conditions have now turned vast areas into tinderboxes.
The Growing Threat: What the Future Holds
The world’s climate is now so volatile that extreme weather events are no longer an anomaly. They are becoming the new normal. Rising temperatures are leading to extreme heatwaves, higher sea levels are threatening coastal communities, and shifting weather patterns are disrupting ecosystems and agriculture. We are seeing longer droughts, more intense storms, and unpredictable rainfall, all of which are affecting millions of people across the globe.
In the coming decades, the situation is expected to worsen. According to scientists, we are on track to exceed a 1.5°C rise in global temperatures by 2050, with the potential for far-reaching consequences. Sea levels are projected to rise, displacing millions of people, while agriculture will suffer due to unpredictable rainfall and extreme temperatures. Already vulnerable regions, such as the Pacific Islands, will be the hardest hit, while major cities like New York, Mumbai, and Jakarta are all at risk of flooding.
Rising Temperatures and Their Far-reaching Effects
Even small changes in the Earth’s temperature can have profound impacts. A temperature-increase of just 1.5°C could lead to the irreversible melting of polar ice caps, resulting in a rise in sea levels that would submerge entire cities. Rising temperatures can also trigger the release of methane from thawing permafrost, a potent greenhouse gas that could accelerate global warming even further.
The stories from the Amazon, Kerala, Oregon, and beyond serve as stark reminders that the climate crisis is not a future problem—it is a present-day reality
One of the most troubling aspects of this warming is how it is changing the planet’s ecosystems. Species that once thrived in specific temperature ranges are now struggling to survive. Many are migrating to cooler areas, while others face extinction. As habitats shrink and weather patterns change, the very fabric of biodiversity is at risk.
Can We Change Course?
The question now is: Can we reverse or at least slow down these changes? While the situation is dire, scientists and environmentalists believe that immediate action can still mitigate the worst impacts of climate change. Transitioning to renewable energy sources, reducing deforestation, and investing in sustainable agricultural practices are essential steps. Governments, corporations, and individuals all have a role to play in ensuring that we shift towards a more sustainable and resilient future.
There is still time to act, but the window is closing fast. The more we delay, the more severe the impacts will be. The stories from the Amazon, Kerala, Oregon, and beyond serve as stark reminders that the climate crisis is not a future problem—it is a present-day reality that we can no longer afford to ignore.
A Global Call to Action
From the scorched rainforests of the Amazon to the flooded streets of Kerala and the heat-baked forests of Oregon, climate change is no longer a distant concept. It is here, now, and it affects all of us. But the power to change our future lies in our hands. By making sustainable choices, demanding policy changes, and holding accountable those who contribute to the climate crisis, we can begin to heal our planet before it’s too late.
The stories we tell today will define the world that future generations inherit. Will they look back and see a world that acted in time, or a world that failed to change until it was too late? The choice is ours.
Earth
Expanding Roads in Africa’s Mountains Threaten Endangered Wildlife
As road networks expand into Africa’s mountainous regions, endangered and vulnerable wildlife face increasing risks of roadkill. Experts warn that without better monitoring and conservation efforts, this growing threat could decimate unique biodiversity

The remote mountain regions of the world, once pristine and largely untouched by human development, are becoming increasingly perilous for wildlife. As road networks extend into these rugged terrains, endangered and vulnerable species are facing an ominous new threat—roadkill.
Species such as the African wild dog (endangered), lions and leopards (both vulnerable), elephants (endangered), and honey badgers (near threatened) are at grave risk, according to new research presented by Professor Aliza le Roux, Assistant Dean of the Faculty of Natural and Agricultural Sciences at the University of the Free State. These animals, many classified by the International Union for Conservation of Nature (IUCN) as at risk, face an increasingly perilous existence.

In her compelling presentation at the Southern African Mountain Conference (SAMC2025), she revealed the stark reality that these once-untouched ecosystems are now being invaded by expanding roads that are leading to more wildlife-vehicle collisions, many of them fatal.
“Wildlife in these regions is incredibly vulnerable, and as roads push deeper into mountainous areas, we’re seeing a dramatic rise in roadkill incidents,” said Prof Le Roux. “Among the casualties, we’re finding not just mammals, but also critically endangered birds like the hooded vulture and the steppe eagle.”
The conference, which brought together leading researchers, policymakers, and environmental experts, focused on the dire state of mountain ecosystems, communities, and biodiversity. UNESCO, in partnership with the University of the Free State’s Afromontane Research Unit, the African Mountain Research Foundation, and the Global Mountain Safeguard Research Programme, facilitated the gathering.
For the past several months, Prof Le Roux and her colleagues—Dr Katlego Mashiane, a lecturer at the UFS Department of Geography, and Dr Clara Grilo of the BIOPOLIS project in Portugal—have scoured decades’ worth of data on roadkill, analyzing published papers from 1971 to 2024. The findings were both alarming and illuminating, revealing that the majority of roadkill data available for Africa has emerged only in the 21st century.
A Growing Threat to Wildlife
In mountainous regions, amphibians were found to be the most frequent roadkill victims, while mammals, particularly those most vulnerable to extinction, were most often killed in the low-lying regions. In some high-elevation mountains, nearly 8% of mammals killed on the roads were species classified as endangered or vulnerable. Even more alarming, the roadkill rate in these regions continues to rise as human development accelerates.
“Many smaller species—those weighing less than 1 kilogram—fall victim to vehicles simply because we don’t see them. However, larger mammals, such as elephants or antelope, are often noticed only after the crash,” Prof Le Roux explained. “When these large animals are killed, it’s not just a loss for the species; it’s a loss for us too, as these collisions can cause significant damage to vehicles and pose a danger to human drivers.”
The risk is compounded by unpredictable weather and treacherous mountain roads, where sudden changes in terrain and visibility make it difficult for both drivers and wildlife to react in time. Prof Le Roux and her team noted that the ruggedness of these areas makes it harder for animals to detect oncoming vehicles, raising the likelihood of accidents.

“These regions are already dangerous for drivers, but for wildlife, the roads are a death trap,” Prof Le Roux said. “The increased number of vehicles, combined with better-paved roads, is putting more and more wildlife at risk.”
Using sophisticated tools like Google Earth Engine’s geospatial platform, the researchers analyzed data from a variety of terrains, classifying areas by elevation. High-elevation mountains, defined as regions above 2,000 meters, moderate elevations between 1,500 and 2,000 meters, and lowland areas below 1,500 meters were all found to have significant roadkill rates, particularly among mammals and birds of conservation concern.
Data Gaps and Underreporting
The study highlighted a critical issue: limited data. Despite the alarming trends, the lack of comprehensive, systematic data across much of the African continent has left major gaps in understanding the full scope of the roadkill crisis. Data was available for only 10 countries, and much of the information consisted of ‘snapshots’ rather than long-term, continuous monitoring.
“There is so much we don’t know about the true scale of this issue across Africa, particularly in the central and western regions,” Prof Le Roux lamented. “What we do know is that these collisions are happening in areas that are home to species that exist nowhere else. We cannot afford to ignore the threat to biodiversity in these mountain ecosystems.”
As the push for infrastructure development grows, the consequences for wildlife have never been clearer. The growing mortality rate among vulnerable species, many of which are already at risk of extinction, could result in devastating losses for biodiversity.
Prof Le Roux and her colleagues urge immediate action to mitigate these risks, calling for more comprehensive data collection, better road planning, and the implementation of wildlife corridors to safeguard these precious ecosystems.
“We must recognize that as we expand our roads into these high-risk areas, we’re also taking a toll on the very creatures that make these mountains so unique,” Prof Le Roux said, emphasizing the urgent need for a balanced approach to development and conservation.
As the conference came to a close, one message echoed throughout the halls: The future of Africa’s mountainous wildlife depends on the actions we take now. The clock is ticking, and the road ahead may be the final journey for some of the continent’s most endangered creatures.
Earth
$4.3 Trillion Economic Loss: The Rising Cost of Climate Change and the Urgent Need for Early Warning Systems
Early warning systems, which are proven to reduce the economic and human costs of extreme weather, remain inaccessible to nearly half of the world’s countries

The world is paying an increasingly heavy price for the devastating effects of climate change. In the last five decades alone, global economic losses due to weather, climate, and water-related disasters have soared to an eye-watering $4.3 trillion. The death toll, though falling, remains tragically high with over 2 million people having lost their lives to these extreme events. As the planet continues to heat up, with 2024 marked as the hottest year on record, the financial toll of these disasters is only set to rise.
The problem isn’t just the scale of these losses, but the lack of adequate systems in place to mitigate them. Early warning systems, which are proven to reduce the economic and human costs of extreme weather, remain inaccessible to nearly half of the world’s countries. While the technology exists, the disparity in access to life-saving forecasting and warning systems is leaving millions vulnerable to storms, floods, wildfires, and droughts that could otherwise be anticipated.

“We are more than just weather forecasters,” said Celeste Saulo, Secretary-General of the World Meteorological Organization (WMO), which recently marked its 75th anniversary. “WMO makes the world safer, more secure, and prosperous.” Yet, despite decades of advancements in forecasting, gaps remain. Countries with limited resources struggle to set up the infrastructure needed to protect their populations, which often face the brunt of the most severe consequences of climate change.

In his message for World Meteorological Day, UN Secretary-General António Guterres highlighted the stark reality: “It is disgraceful that, in a digital age, lives and livelihoods are being lost because people have no access to effective early warning systems.” The warning from Guterres couldn’t be clearer: early warning systems are not luxuries. They are necessities—and crucial investments that offer nearly a ten-fold return.
The data is irrefutable. From satellite feeds to ocean buoys, billions of measurements are collected daily from across the globe. Yet, in many parts of the world, these critical insights into climate and weather patterns do not reach those who need them most. Gaps in observation networks and forecasting accuracy continue to undermine the ability of vulnerable communities to prepare for and respond to disasters.
WMO’s Early Warnings for All initiative seeks to address this crisis by ensuring that by 2027, every country, no matter how economically or technologically challenged, has access to effective early warning systems. As of 2024, 108 countries report some capacity for multi-hazard early warning systems—more than double the number from 2015. However, this progress is not fast enough to prevent future calamities. The economic costs of inaction are simply too high.
Key Data Points |
---|
$4.3 Trillion – Total global economic losses from weather, climate, and water-related hazards between 1970 and 2021. |
2 Million+ – Number of lives lost to weather, climate, and water-related disasters between 1970 and 2021. |
108 Countries – The number of countries with some capacity for multi-hazard early warning systems as of 2024, more than double the 52 countries in 2015. |
$1 Investment in Early Warning Systems – The potential return on investment is nearly ten times the cost, according to UN Secretary-General António Guterres. |
2024 – The year marked as the hottest year on record. |
75 Years – The number of years the World Meteorological Organization (WMO) has been a UN specialized agency, working to improve global resilience to climate change. |
Source: WMO |
Between 1970 and 2021, climate-related disasters cost the global economy $4.3 trillion—a figure that continues to climb year after year. Without early warnings, this loss is compounded by the inability of countries to adapt or respond in time, resulting in more widespread destruction and human suffering. But for every dollar invested in early warning systems, the potential savings and lives saved are immense.
“The staff of National Meteorological and Hydrological Services are like doctors and nurses – working 24/7 to safeguard and promote public well-being,” Saulo emphasized. These services are crucial for monitoring climate and weather changes and issuing warnings, but much of the world’s population still lacks access to these vital resources.
WMO’s call to action on World Meteorological Day, though after the fact, remains urgent: “We need high-level political support, increased technology sharing, greater collaboration between governments and businesses, and a major effort to scale-up finance,” said Guterres. He emphasized the importance of boosting the lending capacity of multilateral development banks to ensure that resources reach the nations most at risk.
As the planet faces increasingly volatile climate conditions, the economic costs of inaction are mounting. Without the necessary investment in early warning systems, millions will continue to suffer, and the global economy will pay the price. The time to act is now. Climate change may be an overwhelming challenge, but with the right systems in place, we can mitigate the damage, save lives, and protect our collective future.
Earth
Global Renewable Energy Future Hinges on Climate-Informed Planning, New Report Reveals
The findings underscore the urgent need for integrating climate data into energy strategies to meet the ambitious renewable energy and energy efficiency goals set for 2030

As the global transition to renewable energy gathers pace, accurate weather and climate insights are becoming crucial for ensuring the reliability and resilience of energy systems, as well as for effectively planning electricity demand and supplies. A new report, 2023 Year in Review: Climate-driven Global Renewable Energy Potential Resources and Energy Demand, highlights the essential role of climate-informed and diversified energy solutions to meet global targets for renewable energy expansion.
The report, a collaborative effort from the World Meteorological Organization (WMO), the International Renewable Energy Agency (IRENA), and the Copernicus Climate Change Service (C3S), which is operated by the European Centre for Medium-Range Weather Forecasts (ECMWF), underscores the need for a comprehensive approach in planning renewable energy systems.
“Whether it is solar power generation in drier-than-average conditions, wind power generation in regions experiencing shifts from La Niña to El Niño conditions, or hydropower generation in the face of fluctuating precipitation patterns, climate has a direct bearing on both electricity supply and demand. Such challenges also present unprecedented opportunities: the integration of climate insights into energy planning yields more reliable power generation, helps anticipate seasonal peaks in demand and strengthens the adaptability of future infrastructure development,” said WMO Secretary-General Celeste Saulo, IRENA Director-General Francesco Camera, and C3S Director Carlo Buontempo in a joint foreword.
The report focuses on the year 2023, which marked a transition from La Niña to El Niño conditions, significantly affecting climatic variables critical to the energy sector, including wind speed, solar radiation, precipitation, and temperature. Notably, 2023 was the warmest year on record until it was surpassed by 2024.
This report is being released ahead of the Sustainable Energy for All Global Forum, set to take place in Barbados on 12-13 March 2025.
According to a press statement issued by the organizations involved, the findings underscore the urgent need for integrating climate data into energy strategies to meet the ambitious renewable energy and energy efficiency goals set for 2030.
-
EDUNEWS & VIEWS5 months ago
India: Big Science in the 20th century and beyond
-
Interviews5 months ago
Memory Formation Unveiled: An Interview with Sajikumar Sreedharan
-
Space & Physics6 months ago
Nobel laureates in Physics recognized for contributions to Machine Learning
-
Society5 months ago
Global tech alliance: Nvidia partners with Reliance to transform AI landscape in India
-
The Sciences6 months ago
UFS researcher tackles plastic pollution with innovative biodegradable polymers
-
The Sciences5 months ago
Prof Saleem Badat awarded ASSAf Science-for-Society Gold Medal
-
Space & Physics6 months ago
Pioneers of modern Artificial Intelligence
-
Space & Physics6 months ago
Hubble Telescope reveals a peculiar galaxy shape