Space & Physics
In search for red aurorae in ancient Japan
Ryuho Kataoka, a Japanese auroral scientist, played a seminal role in searching for evidence of super-geomagnetic storms in the past using historical methods

Aurorae seen on Earth are the end of a complex process that begins with a violent, dynamic process deep within the sun’s interior.
However, studying the depths of the sun is no easy task, even for scientists. The best they can do is to observe the surface using space-based telescopes. One problem that scientists are attempting to solve is how a super-geomagnetic storm on Earth comes to being. These geomagnetic storms find their roots in sunspots, that are acne-like depressions on the sun’s surface. As the sun approaches the peak of its 11-year solar cycle, these sunspots, numbering in the hundreds, occasionally release all that stored magnetic energy into deep space, in the form of coronal mass ejections (CMEs) (which are hot wisps of gas superheated to thousands of degrees).
Super-geomagnetic storms, a particularly worse form of geomagnetic storm, can induce power surges in our infrastructure, causing power outages that can plunge the world into darkness, and can cause irreversible damages to our infrastructure
If the earth lies in the path of an oncoming CME, the energy release from their resultant magnetic field alignment can cause intense geomagnetic storms and aurorae on Earth.
This phenomenon, which is astrophysical and also electromagnetic in nature, can have serious repercussions for our modern technological society.
Super-geomagnetic storms, a particularly worse form of geomagnetic storm, can induce power surges in our infrastructure, causing power outages that can plunge the world into darkness, and can cause irreversible damages to our infrastructure. The last recorded super-geomagnetic storm event occurred more than 150 years ago. Known as the Carrington event, the storm destroyed telegraph lines across North America and Europe in 1859. The risk for a Carrington-class event to happen again was estimated to be 1 in 500-years, which is quite low, but based on limited data. Ramifications are extremely dangerous if it were to ever happen.
However, in the past decade, it was learnt that such super-geomagnetic storms are much more common than scientists had figured. To top it all, it wasn’t just science, but it was a valuable contribution by art – specifically ancient Japanese and Chinese historical records that shaped our modern understanding of super-geomagnetic storms.

Ryuho Kataoka, a Japanese space physicist, played a seminal role in searching for evidence of super-geomagnetic storms in the past using historical methods. He is presently an associate professor in physics, holding positions at Japan’s National Institute of Polar Research, and The Graduate University for Advanced Studies.
“There is no modern digital dataset to identify extreme space weather events, particularly super-geomagnetic storms,” said Professor Kataoka. “If you have good enough data, we can input them into supercomputers to do physics-based simulation.”
However, sunspot records go until the late 18th century when sunspots were actively being cataloged. In an effort to fill the data gap, Professor Kataoka decided to be at the helm of a very new but promising interdisciplinary field combining the arts with space physics. “The data is limited by at least 50 years,” said Professor Kataoka. “So we decided to search for these red vapor events in Japanese history, and see the occurrence patterns … and if we are lucky enough, we can see detailed features in these lights, pictures or drawings.” Until the summer of 2015, Ryuho Kataoka wasn’t aware of how vast ancient Japanese and Chinese history records really were.
“There is no modern digital dataset to identify extreme space weather events, particularly super-geomagnetic storms,” said Professor Kataoka.
In the past 7 years, he’s researched a very specific red aurora, in documents extending to more than 1400 years. “Usually, auroras are known for their green colors – but during the geomagnetic storm, the situation is very different,” he said. “Red is of course unusual, but we can only see red during a powerful geomagnetic storm, especially in lower latitudes. From a scientific perspective, it’s a very reasonable way to search for red signs in historical documents.”
A vast part of these historical red aurora studies that Professor Kataoka researched came from literature explored in the last decade by the AURORA-4D collaboration. “The project title included “4D”, because we wanted to access records dating back 400 years back during the Edo period,” said Professor Kataoka.
“From the paintings, we can identify the latitude of the aurora, and calculate the magnitude or amplitude of the geomagnetic storm.” Clearly, paintings in the Edo period influenced Professor Kataoka’s line of research, for a copy of the fan-shaped red aurora painting from the manuscript Seikai (which translates to ‘stars’) hangs on the window behind his office desk at the National Institute of Polar Research.
The painting fascinated Professor Kataoka, since it depicted an aurora that originated during a super-geomagnetic storm over Kyoto in 1770. However, the painting did surprise him at first, since he wondered whether the radial patterns in the painting were real, or a mere artistic touch to make it look fierier. “That painting was special because this was the most detailed painting preserved in Japan,” remarked Professor Kataoka. “I took two years to study this, thinking this appearance was silly as an aurorae scientist. But when I calculated the field pattern from Kyoto towards the North, it was actually correct!”

Fan-shaped red aurora painting from the ‘Seikai’, dated 17th September, 1770; Picture Courtesy: Matsusaka City, Mie Prefecture.
The possibility to examine and verify historical accounts using science is also a useful incentive for scholars of Japanese literature and scientists partaking in the research.
“This is important because, if we scientists look at the real National Treasure with our eyes, we really know these sightings recorded were real,” said Professor Kataoka. “The internet is really bad for a survey because it can easily be very fake,” he said laughing. It’s not just the nature in which science was used to examine art – to examine Japanese “national treasures” that is undoubtedly appealing, but historical accounts themselves have contributed to scientific research directly.
“From our studies, we can say that the Carrington class events are more frequent than we previously expected,” said Professor Kataoka. There was a sense of pride in him as he said this. “This Carrington event is not a 1 in 200-year event, but as frequent as 1 in 100 years.” Given how electricity is the lifeblood of the 21st century, these heightened odds do ingrain a rather dystopian society in the future, that is ravaged by a super-geomagnetic storm.
Professor Kataoka’s work has found attention within the space physics community. Jonathon Eastwood, Professor of Physics at Imperial College London said to EdPublica, “The idea to use historical information and art like this is very inventive because these events are so rare and so don’t exist as information in the standard scientific record.”
There’s no physical harm from a geomagnetic storm, but the threat to global power supply and electronics is being increasingly recognized by world governments. The UK, for instance, identified “space weather” as a natural hazard in its 2011 National Risk Register. In the years that followed, the government set up a space weather division in the Met Office, the UK’s foremost weather forecasting authority, to monitor and track occurrences of these coronal mass ejections. However, these forecasts, which often supplement American predictions – namely the National Oceanic and Atmospheric Administration (NOAA) – have failed to specify previously where a magnetic storm could brew on Earth, or predict whether a coronal mass ejection would ever actually strike the Earth.
Professor Kataoka said he wishes space physicists from other countries participate in similar interdisciplinary collaborations to explore their native culture’s historical records for red aurora sightings
The former occurred during the evacuation process for Hurricane Irma in 2017, when amateur radio ham operators experienced the effects of a radio blackout when a magnetic storm affected the communications network across the Caribbean. The latter occurred on another occasion when a rocket launch for SpaceX’s Starlink communication satellites was disrupted by a mild geomagnetic storm, costing SpaceX a loss of over $40 million.
Professor Kataoka said he wishes space physicists from other countries participate in similar interdisciplinary collaborations to explore their native culture’s historical records for red aurora sightings. He said the greatest limitation of the AURORA-4D collaboration was the lack of historical records from other parts of the world. China apparently boasts a history of aurora records longer than Japan, with a history lasting before Christ himself. “Being Japanese, I’m not familiar with British, Finnish or Vietnamese cultures,” said Professor Kataoka. “But every country has literature researchers and scientists who can easily collaborate and perform interdisciplinary research.” And by doing so, it’s not just science which benefits from it, but so is ancient art whose beauty and relevance gains longevity.
Space & Physics
Study Suggests Primordial Black Hole Explosions May Explain Highest-Energy Neutrino Detected
Researchers from MIT propose that a primordial black hole’s final explosion could be responsible for the most energetic neutrino ever observed, potentially marking the first direct evidence of Hawking radiation and shedding light on the nature of dark matter.

A path-breaking study from MIT offers a novel explanation for the most energetic neutrino ever detected: the final explosion of a primordial black hole (PBH). This research, published in Physical Review Letters, presents a compelling theoretical model suggesting that an ancient, microscopic black hole vaporizing just outside our solar system might be the source of this elusive “ghost particle.”
Neutrinos are known for their ghost-like ability to traverse space virtually undisturbed, making them difficult to detect despite being the universe’s most abundant particles. The recently observed neutrino, captured by the Cubic Kilometer Neutrino Telescope (KM3NeT) under the Mediterranean Sea, contained energy levels exceeding anything produced by human-made accelerators.
The MIT team, including lead author Alexandra Klipfel, explains that primordial black holes—hypothetical remnants from the early universe—slowly lose mass through Hawking radiation, emitting an array of particles as they evaporate. This process intensifies as the PBH shrinks, culminating in a violent final burst of energy. “It’s something we can now try to look for and confirm with various experiments,” Klipfel said in a media statement.
Co-author David Kaiser described the challenge: “We don’t have hope of detecting Hawking radiation from stellar black holes, so our best chance lies with tiny primordial black holes.” Their calculations estimate that thousands of such PBHs might explode yearly within the Milky Way, and there’s a roughly 8% chance one occurred close enough to Earth to explain the detected neutrino.
This discovery could represent the first observation of Hawking radiation and provide crucial insights into the mysterious dark matter that comprises 85% of the universe’s matter. However, confirming the theory requires more detections of these high-energy neutrinos.
Kaiser expressed cautious optimism: “If proven, it would validate pivotal aspects of black hole physics and unravel clues about dark matter’s nature.”
Ongoing and future experiments, like those tracking particle remnants from potential PBH explosions, offer hope in this cosmic detective story.
Space & Physics
Cosmic Dust Reveals Secrets of the Milky Way’s Magnetic Fields
Astronomers uncover how interstellar dust grains align with galactic magnetic fields, revealing new insights into star formation and cosmic evolution.

If you’ve ever watched dust twirl in a sunbeam, you’ve seen how small, ordinary specks can tell a bigger story. Out in space, the Milky Way carries its own version of these floating storytellers: interstellar dust grains. Though each one is only a few micrometres wide and made mostly of silicates and carbon, these cosmic crumbs hold the key to how stars, planets, and even galaxies evolve.
Now, a team of astronomers from the Indian Institute of Astrophysics (IIA), Bengaluru, has made a remarkable breakthrough. They’ve gathered the strongest observational evidence yet showing how these dust grains actually line up with invisible magnetic fields stretching across our galaxy.
The search for alignment
This discovery tackles a mystery that has puzzled scientists for decades. Back in 1949, astronomers noticed that starlight looked “polarized”—its vibrations lined up in a single direction—as it passed through space. The best explanation was that elongated dust grains were somehow aligning themselves with the magnetic fields around them. But exactly how they did it has remained an open question—until now.
A peek into a cosmic cradle
To solve the puzzle, researchers looked deep into a massive star-forming cloud called G34.43+0.24, about 12,000 light-years away. Think of it as a giant celestial nursery, filled with dense regions where baby stars—protostars—are still wrapped inside protective cocoons of dust and gas. Among its most famous residents are MM1, MM2, and MM3, all destined to become massive stars.

Using the powerful POL-2 polarimeter on the James Clerk Maxwell Telescope in Hawaii, the team mapped how dust grains in this stellar nursery twisted and turned in response to magnetic fields. What they found was both surprising and elegant: three different alignment processes working simultaneously in the same cloud.
The three cosmic tricks of dust
Here’s how dust grains behave under different cosmic conditions:
- Spinning into Place (RAT-A): Dust grains spin up when exposed to uneven radiation, neatly aligning themselves with magnetic fields.
- Breaking Under Pressure (RAT-D): When blasted by strong radiation from powerful protostars, some grains spin so fast that they break apart, reducing their ability to align.
- Supercharged Alignment (M-RAT): Under the influence of strong magnetic interactions, grains align even more efficiently, creating stronger polarization signals.
In other words, dust can act like a perfect compass, fall apart under stress, or become super-charged field tracers—depending on what’s happening around them.
Why this matters
Understanding how dust aligns isn’t just about grains themselves. It gives scientists new tools to trace cosmic magnetic fields, which are crucial for almost everything in space—from how new stars are born to the way entire galaxies hold their spiral shapes.
In a media statement, Saikhom Pravash, lead author of the study and a PhD researcher at IIA and Pondicherry University, explained: “This work strengthens the observational support for the well-established popular grain alignment theories and makes a significant contribution to the long-standing quest to understand the exact grain alignment mechanisms.”
Co-author Archana Soam added: “It’s the key to tracing interstellar magnetic fields and exploring their influence on star formation.”
The findings, published in The Astrophysical Journal, don’t just solve a long-standing mystery—they lift the curtain on one of the universe’s hidden forces, transforming tiny specks of dust into powerful cosmic storytellers.
Space & Physics
Could Alien Life Thrive in Liquid That’s Not Water? MIT Scientists Propose a Dramatic New Possibility
A special blend of chemicals—known as ionic liquids—can easily form on rocky planets and moons, potentially creating new havens for life in the cosmos

For centuries, the search for life beyond Earth has been soaked in one belief: water is essential. Now, MIT researchers are challenging this planetary doctrine—suggesting that the ingredients for life could thrive in liquids far different from water, and perhaps on worlds much harsher than our own.
In a study published this week in Proceedings of the National Academy of Sciences, the MIT-led team demonstrated that a special blend of chemicals—known as ionic liquids—can easily form on rocky planets and moons, potentially creating new havens for life in the cosmos.
Ionic liquids are a type of salt that stays liquid at temperatures below 100°C and, unlike water, can endure extremes of heat and pressure. In their experiments, the researchers mixed sulfuric acid (often produced by volcanoes) with simple nitrogen-rich organic compounds (found on asteroids and planetary atmospheres). The result: a persistent, stable liquid that doesn’t evaporate even when most of the acid is gone.
Ionic liquids, it turns out, can be friendly to rare biomolecules—like hardy proteins—that can resist breakdown in harsh conditions.
Expanding the habitability zone
“We consider water to be required for life because that is what’s needed for Earth life. But if we look at a more general definition, we see that what we need is a liquid in which metabolism for life can take place,” said Dr. Rachana Agrawal, who led the study at MIT’s Department of Earth, Atmospheric and Planetary Sciences. “Now if we include ionic liquid as a possibility, this can dramatically increase the habitability zone for all rocky worlds.”
The implications are staggering: even on planets that are too hot, or whose atmospheres are too thin for water to exist, stable ionic liquids could form and persist—potentially nurturing forms of alien life, though they may look nothing like Earth’s water-based organisms.
From Venus to beyond
The inspiration came when the team was working to solve a Venus mystery. Venus, shrouded in clouds of sulfuric acid, has long fascinated scientists seeking signs of life. When Dr. Agrawal and her colleagues tried to evaporate sulfuric acid from a solution to isolate organic molecules, a stubborn liquid layer wouldn’t go away. They realized they’d accidentally created an ionic liquid—a discovery that opened new doors in astrobiology.
Dr. Sara Seager, MIT’s Class of 1941 Professor of Planetary Sciences and co-leader of the study, described the breakthrough: “In high school, you learn that an acid wants to donate a proton. Oddly enough, we knew from our past work that sulfuric acid (the main component of Venus’ clouds) and nitrogen-containing compounds have this unique chemistry—one gives up a hydrogen, one takes it. It’s like one person’s trash is another person’s treasure.”
After testing over 30 nitrogen compounds with sulfuric acid, the scientists confirmed that ionic liquids reliably form under a wide range of conditions—even on basalt rocks similar to those on planetary surfaces.
“We were just astonished that the ionic liquid forms under so many different conditions,” Seager said. “If you put the sulfuric acid and the organic on a rock, the excess acid seeps into the pores, but you’re still left with a drop of ionic liquid. Whatever we tried, ionic liquid still formed.”
Their experiments showed that this process happens up to 180°C and at pressures far below Earth’s, broadening the realm of possible habitable worlds.
New oases in the universe
Imagine a rocky world, hotter than Earth, where volcanic sulfuric acid flows over pockets of organic matter—ingredients for life scattered across the solar system. According to Dr. Seager, these spots could become long-lived pools of ionic liquid, tiny oases for simple, exotic life forms.
“We’re envisioning a planet warmer than Earth, that doesn’t have water, and at some point in its past or currently, it has to have had sulfuric acid, formed from volcanic outgassing,” Seager explained. “This sulfuric acid has to flow over a little pocket of organics. And organic deposits are extremely common in the solar system.”
Just how far could this discovery go? The team says much more work lies ahead. They will now focus on what kinds of molecules—and what forms of life—could actually flourish in these unearthly environments.
“We just opened up a Pandora’s box of new research,” Seager said. “It’s been a real journey.”
Contributors to the study include: MIT scientists Sara Seager, Rachana Agrawal, Iaroslav Iakubivskyi, Weston Buchanan, Ana Glidden, Jingcheng Huang; Maxwell Seager (Worcester Polytechnic Institute); William Bains (Cardiff University); Janusz Petkowski (Wroclaw University of Science and Technology).
-
Space & Physics6 months ago
Could dark energy be a trick played by time?
-
Women In Science6 months ago
Neena Gupta: Shaping the Future of Algebraic Geometry
-
Space & Physics5 months ago
Sunita Williams aged less in space due to time dilation
-
Earth5 months ago
122 Forests, 3.2 Million Trees: How One Man Built the World’s Largest Miyawaki Forest
-
Space & Physics5 months ago
Did JWST detect “signs of life” in an alien planet?
-
Learning & Teaching5 months ago
How Understanding Individual Learning Styles Can Transform Education
-
Space & Physics4 months ago
Is Time Travel Possible? Exploring the Science Behind the Concept
-
Earth6 months ago
How Tuna and Swordfish Hunt in the Deep; MIT Oceanographers find the answer