Connect with us

Society

A tale of two divergent nuclear energy policies

Germany phased out nuclear energy after protests and nuclear disasters elsewhere shook public faith. France pushed ahead with centralized planning. Laid bare in this piece is how their contrasting legacies reveal the complex dance between democracy and technology.

Karthik Vinod

Published

on

Public protest against the use of nuclear power in Bonn, West Germany | Photo Credit: Hans Weingartz

In a world reeling from climate change effects, nuclear energy has offered a cleaner and viable alternative to fossil fuels. However, concerns regarding safety and radioactive waste management persists in developed and developing nations alike. In the past century, the backdrop of nuclear anxieties during the Cold War had even major Western powers, such as Germany and France, on the backfoot addressing those fears.

Their choice to engage in dialogue with the public, left their respective nuclear energy policies contrasting legacies. Policy makers would do well to consider the importance of maintaining public trust, crucial to build a future with clean energy.

West German Anxiety

In the 1970s, West Germany had announced plans to produce a quarter of electric power with nuclear energy. But protests broke out in the city of Wyhl, against having a nuclear reactor operate in their vicinity, claiming potential ecological threat. Ecological institutes had lent support to this view. But authorities failed to engage, considering the argument to have lacked merit. However, a blowback ensued, bolstered by lobbyists applying pressure. Authorities buckled under pressure, in what was just the first of many such public protests nuclear power plants.

In Germany, for long it had just been the “green” political parties, which had been uncompromisingly anti-nuclear. But following the meltdown at Fukushima nuclear power plant in 2011, even fence-sitters have joined the bandwagon. The Germans plan to phase out nuclear power plants completely by this decade. Notwithstanding that, they are still able to achieve net zero carbon dioxide emissions by 2045. However, commentators still wonder whether Germany has squandered an opportunity out of irrational political compulsions; now instead pursuing still expensive means of renewable energy. Their next-door neighbour, France meanwhile, has built more power plants in the intervening decades.

Superphenix, Nuclear power plant at Creys-Malville, Isère, France | Photo Credit: Yann Forget

Lending a blind eye

France did witness large-scale protests, such as against the Superphenix spent fuel disposal plant, that led to its shutdown in 2000. But protests in France, mirroring those in Germany are rare. Protests are relatively less effective under a government content with centralized, institutionalized policy making. Despite the lack of public engagement in this case, it helped there was de-facto consensus among political parties, in support of nuclear power.

If public concerns existed, these were mostly addressed through existing environment safety laws. As such, nuclear power plants did not cause a stir amongst voters immediately. But this began to change when the green parties in France came to the foyer in the 1990s. In their 2015 article, scholars Sylvain Brouard and Isabelle Guinadeau said: “The pro-nuclear consensus was broken only after the Green Party became a potential coalition partner for the PS (Socialist Party); the PS manifesto has become less and less pro-nuclear since then in order to preserve the pre-electoral coalition with the Greens.” 

The resultant policy faced little public accountability as a result. Forecasts on electricity demands were vastly overestimated, with there being far more nuclear power plants built than necessary. Also, these plants are particularly vulnerable during winters, thereby relying on heavy electric power imports during the season. Since hitting peaks in the 1970s and 80s, when nuclear energy accounted for some 80% of energy and electricity demand in the country, that figure has dipped sharply, and will so until about 50% soon, considering a renewed push to alternative renewable resources.

Engage in dialogue

It helped that neither France, nor Germany had dealt with a radioactive mishap, unlike the 1986 Chernobyl disaster in erstwhile Soviet Union, or the Three Mile Island disaster in the United States; instances where people were exposed to harmful radioactive exposure. And so, it should be little wonder the public are consulted to address problems that concern their own safety. Often, governments adopt a top-down approach in explaining their position to the public about their policy. But there must be space for dialogue. Science policies are only effective when they are framed democratically; when policy makers fail to consult beforehand with their beneficiaries – the public.

Including members of the public with “lay” expertise often invites criticism for their lack of subject-matter expertise. While this holds true, especially in advocacy for public participation in scientific advisory committees for example, a critical angle – or unique perspective – can prove beneficiary. In a 2012 article examining public engagement practices notes, scholars Alan Irwin, Torben Elgaard Jensen, and Kevin E. Jones, notes: “Criticism, rather than voicing negative prospects and possibilities that must be overcome before meaningful action can occur, has potential value (and relevance) as a meaningful action in its own right.”

For a fact, scientists relying upon scientific evidence themselves, are often beleaguered with the uncertainties and risks involved in handling affairs. There is space for lay persons to take part in risk assessments, that can help identify potential hazards to them, and risk compensation pathways that can compensate them in the event of a disaster. All of this makes policy making more holistic, and in spirit with celebrating participatory democracy in decision-making.

Society

How 2025’s Emerging Technologies Could Redefine Our Lives

Published

on

In an age when algorithms help cars avoid traffic and synthetic microbes could soon deliver our medicine, the boundary between science fiction and science fact is shrinking. The World Economic Forum’s Top 10 Emerging Technologies of 2025 offers a powerful reminder that innovation is not just accelerating — it’s converging, maturing, and aligning itself to confront humanity’s most urgent challenges.

From smart cities to sustainable farming, from cutting-edge therapeutics to low-impact energy, this year’s list is more than a forecast. It’s a blueprint for a near future in which resilience and responsibility are just as crucial as raw invention.

Sensing the World Together

Imagine a city that can sense a traffic jam, redirect ambulances instantly, or coordinate drone deliveries without a hiccup. That’s the promise of collaborative sensing, a leading entry in the 2025 lineup. This technology enables vehicles, emergency services, and infrastructure to “talk” to each other in real time using a network of connected sensors — helping cities become safer, faster, and more responsive.

It’s one of several technologies on this year’s list that fall under the theme of “trust and safety in a connected world” — a trend reflecting the growing importance of reliable information, responsive systems, and secure networks in daily life.

Trust, Truth, and Invisible Watermarks

But as digital content spreads and AI-generated images become harder to distinguish from reality, how do we safeguard truth? Generative watermarking offers a promising solution. By embedding invisible tags in AI-generated media, this technology makes it easier to verify content authenticity, helping fight misinformation and deepfakes.

“The path from breakthrough research to tangible societal progress depends on transparency, collaboration, and open science,” said Frederick Fenter, Chief Executive Editor of Frontiers, in a media statement issued alongside the report. “Together with the World Economic Forum, we have once again delivered trusted, evidence-based insights on emerging technologies that will shape a better future for all.”

Rethinking Industry, Naturally

Other breakthroughs are tackling the environmental consequences of how we make things.

Green nitrogen fixation, for instance, offers a cleaner way to produce fertilizers — traditionally one of agriculture’s biggest polluters. By using electricity instead of fossil fuels to bind nitrogen, this method could slash emissions while helping feed a growing planet.

Then there’s nanozymes — synthetic materials that mimic enzymes but are more stable, affordable, and versatile. Their potential applications range from improving diagnostics to cleaning up industrial waste, marking a shift toward smarter, greener manufacturing.

These technologies fall under the trend the report identifies as “sustainable industry redesign.”

Health Breakthroughs, From Microbes to Molecules

The 2025 report also spotlights next-generation biotechnologies for health, a category that includes some of the most exciting and potentially transformative innovations.

Engineered living therapeutics — beneficial bacteria genetically modified to detect and treat disease from within the body — could make chronic care both cheaper and more effective.

Meanwhile, GLP-1 agonists, drugs first developed for diabetes and obesity, are now showing promise in treating Alzheimer’s and Parkinson’s — diseases for which few options exist.

And with autonomous biochemical sensing, tiny wireless devices capable of monitoring environmental or health conditions 24/7 could allow early detection of pollution or disease — offering critical tools in a world facing climate stress and health inequities.

Building Smarter, Powering Cleaner

Under the theme of “energy and material integration”, the report also identifies new approaches to building and powering the future.

Structural battery composites, for example, are materials that can both carry loads and store energy. Used in vehicles and aircraft, they could lighten the load — quite literally — for electric transportation.

Osmotic power systems offer another intriguing frontier: by harnessing the energy released when freshwater and saltwater mix, they provide a low-impact, consistent power source suited to estuaries and coastal areas.

And as global electricity demand climbs — especially with the growth of AI, data centers, and electrification — advanced nuclear technologies are gaining renewed interest. With smaller, safer designs and new cooling systems, next-gen nuclear promises to deliver scalable zero-carbon power.

Toward a Converging Future

This year’s edition of the report emphasizes a deeper trend: technological convergence. Across domains, innovations are beginning to merge — batteries into structures, biology into computing, sensing into infrastructure. The future, it seems, will be shaped less by standalone inventions and more by integrated, systemic solutions.

“Scientific and technological breakthroughs are advancing rapidly, even as the global environment for innovation grows more complex,” said Jeremy Jurgens, Managing Director of the World Economic Forum, in the WEF’s official media release.


“The research provides top global leaders with a clear view of which technologies are approaching readiness, how they could solve the world’s pressing problems and what’s required to bring them to scale responsibly,” he added.

Beyond the Hype

Now in its 13th year, the Top 10 Emerging Technologies report has a strong track record of identifying breakthroughs poised to move from lab to life — including mRNA vaccines, flexible batteries, and CRISPR-based gene editing.

But this year’s list is not just a celebration of possibility. It’s a reminder of what’s needed to deliver impact at scale: responsible governance, sustained investment, and public trust.

As Jeremy Jurgens noted, “Breakthroughs must be supported by the right environment — transparent, collaborative, and scalable — if they are to benefit society at large.”

In a time of climate stress, digital overload, and health inequity, these ten technologies offer something rare: a credible roadmap to a better future — not decades away, but just around the corner.

Continue Reading

Society

Shukla is now India’s first astronaut in decades to visit outer space

Shubhanshu Shukla, the mission pilot, has now become the first Indian astronaut in space in decades; only second to fellow air force veteran and group captain, Rakesh Sharma during the Soyuz mission in 1984.

Published

on

Shubhanshu Shukla, Axiom-4 Mission Pilot | Photo Credit: Axiom

After innumerable launch delays, the private human spaceflight mission Axiom-4, finally soared to space at about 1200 hours Indian Standard Time (IST) from Nasa’s Kennedy Space Center, Florida. The Crew Dragon capsule, carrying an international crew of four astronauts, set sail for the International Space Station (ISS) and on schedule to dock with the station tomorrow at approximately 1500 hours IST.

Shubhanshu Shukla, a group captain with the Indian air force, and the mission pilot, has now become the first Indian astronaut to visit space in decades. He’s just the second Indian, following Rakesh Sharma, a squadron leader with the air force then (but retired as wing commander) during 1984’s Soyuz T-11 mission.

Accompanying Shukla on Axiom-4 are mission specialists, Tibor Kapu and Sławosz Uznański-Wiśniewski, from Hungary and Poland respectively. The duo, like Shukla, are the first astronauts in decades from their countries. Meanwhile, Peggy Whitson, the mission commander is a veteran American astronaut who’s embarked upon her second private spaceflight mission.

Upon arriving in space, Shukla addressed the Indian audience during the live broadcast, explaining how the mission marks the beginning of the Indian human spaceflight program. He espoused symbolism invoking the colors of the national flag on his shoulder patch.

“The tricolor embossed on my shoulders tells me that I am with all of you,” he said in his native Hindi. “I want all of you to be part of this journey. Your chest, too, should swell with pride … Together, let’s initiate India’s Human Space Programme. Jai Hind! Jai Bharat!” 

The Indian Space Research Organization (ISRO) had kickstarted the human spaceflight program about two decades ago to mark Indian presence in space. In February 2024, Shukla was amongst four Indian candidate astronauts handpicked to partake in the country’s first crewed mission, Gaganyaan. As such in preparation, as well ahead of the Axiom-4 mission, Shukla had enrolled for a master’s degree in aerospace engineering from the Indian Institute of Science, Bengaluru.

Besides the obvious spectacle the Axiom-4 launch bears for India to expand its space program efforts, there is a space science component to this mission this time. India has filled in slots for a series of seven experiments designed by central institutions.

“He is not going up there alone,” Alok Kumar, a physicist and one of the principal investigators of these experiments, said in an interview to The Print’s Soumya Pillai earlier today. He put these experiments in context of India’s plan to consolidate outer space as a habitat to plan and conduct scientific experiments, to set up base in orbit for the long-term, or even in the moon. Only last year, ISRO announced plans to set up Bharatiya Antariksh Station, at low-earth orbit in 2028.

The microgravity experiments will buzz interest among the scientific community, hoping to make an impact. And Shukla will lead investigations into them, donning a scientist’s lab coat as it were. In fact, he already has a research paper under his belt, with his name listed as coauthor. Despite that, he hasn’t received his masters’ degree yet. Dr. Kumar, who also happens to be Shukla’s thesis advisor at IISc, revealed in The Print interview, the latter ‘s dissertation is still incomplete. He only wished Shukla would return and complete it. “I won’t let him off the hook,” he said lightheartedly.

Continue Reading

Earth

In ancient India, mushy earth made for perfume scent

Kannauj, a city in the Indian state of Uttar Pradesh, offers a sustainable alternative in producing perfumes using traditional modes of distillation.

Khushboo Agrahari

Published

on

Copper stills involved in dheg-bhakpa hydro-distillation | Photo Credit: By special arrangement

A sweet scent typically lingers around in the air at Kannauj, an ancient city in India’s most populous state of Uttar Pradesh. It’s an imprint of the countless occasions when it had rained, of roses that bloomed at dawn, and of sandalwood trees that once breathed centuries of calm.. Though mushy smells are not unique to Kannauj, the city utilized traditional distillation methods to make perfume out of these earthly scents.

Kannauj has had a longstanding tradition in perfume-making since four centuries ago. The city, colloquially known as the country’s ancient perfume capital, still uses rustic copper stills, wood-fired ovens, and bamboo pipes leading to sandalwood oil-filled vessels, or attar as it is colloquially known, to make their perfume. Though it gives a pre-industrial look, a closer peek would reveal an ecosystem of complex thermal regulation, plant chemistry, sustainability science, and hydro-distillation chemistry at work.

When synthetically-made but sustainable perfumes, and AI-generated ones share the spotlight today, Kannauj’s tryst with perfumes offer an alternative, sustainable model in traditional distillation, which is inherently low-carbon, zero-waste, and follow principles of a circular economy; all in alignment with sustainable development goals.

Traditional perfume-making is naturally sustainable

In industrial processing, hydro-distillation is a commonly done to separate substances with different boiling points. Heating the liquids produce vapors, which can later be liquefied in a separate chamber. Perfumers in Kannauj follow the same practice, except it promises to be more sustainable with the copper stills, a process colloquially known as dheg-bhakpa hydro-distillation.

There’s no alcohol or synthetic agents in use. Instead, they heat up raw botanicals – such as roses, vetiver roots, jasmine, or even sunbaked clay – to precise temperatures well short of burning, thereby producing fragrant vapor. The vapors are then guided into cooling chambers, where they condense and bond with a natural fixative, often sandalwood oil. Plant residue is the only byproduct, which finds use as organic compost to cultivate another generation of crops.

The setup for dheg-bhapka hydro-distillation to make perfume | Photo Credit: By special arrangement.

Trapping earthly scent to make perfume

In the past five years, Kannauj’s veteran perfumers noticed a quiet, but steady shift in their timely harvest and produce. Rose harvests have moved earlier by weeks. Vetiver roots grow shallower due to erratic rainfall. Jasmine yields are fluctuating wildly. The local Ganges river, which influences humidity levels essential for distillation timing, is no longer as predictable. For an entire natural aromatic economy built on seasonal synchrony, this uncertainty has rung alarm bells.

“The scent of a flower depends not just on the flower itself,” Vipin Dixit, a third-generation attar-maker whose family has distilled fragrance for decades, said to EdPublica.

“It depends on the weather the night before, on the heat at sunrise, on the moisture in the air. Even the soil has a scent-memory.”

Vipin Dixit, a third-generation attar-maker, whose family have distilled fragrance for decades | Photo Credit: By special arrangement.

As a result, perfumers in Kannauj have begun to adapt, applying traditional wisdom through a modern scientific lens. Local distillers are now working with botanists and environmental scientists to study soil microbiomes, measure scent compounds using chromatography, and develop community-based rainwater harvesting to ensure sustainable crop health.

One of the most surprising innovations is trapping petrichor — the scent of first rain — through earth attars. Clay is baked during extreme heat waves, mimicking summer conditions, then distilled to trap the scent of rain hitting dry soil. This aroma, called mitti attar, is one of the few scents in the world created from an environmental phenomenon; and not a flower.

At a time when the world is scrambling to save biodiversity, the humble attar may become a template for green chemistry — one that doesn’t just preserve scent, but also restores the relationship between science, nature, and soul.

Continue Reading

Trending