Earth
122 Forests, 3.2 Million Trees: How One Man Built the World’s Largest Miyawaki Forest
Meet the man who has created 122 forests—including the world’s largest Miyawaki ecosystem. His 3.2 million trees are cooling Indian cities, reviving water tables, and restoring biodiversity.

In an era when deforestation and climate change threaten ecosystems worldwide, one man from Gujarat—a state on the west coast of India—is rewriting the narrative of environmental restoration.
Dr. Radhakrishnan Nair, fondly known as Nairji, has created 122 forests across India, transforming barren landscapes into thriving ecosystems. His most remarkable achievement, Smritivan (a memorial forest) in Gujarat—recognized as the world’s largest Miyawaki forest—stands as a testament to his vision. Spanning 470 acres and home to over 500,000 trees, this forest is not just a memorial but a beacon of ecological hope. Nair’s work demonstrates how one individual’s determination can combat global warming, restore biodiversity, and inspire communities to embrace a greener future.

From entrepreneur to green crusader
Born in Kasaragod, Kerala, R.K. Nair’s path to becoming India’s “Green Hero” was anything but conventional. After failing his 12th-grade exams, he took on a series of odd jobs, eventually rising to become a successful entrepreneur in the garment industry. But a pivotal moment came in 2011, in Umargam, Gujarat, when he witnessed the felling of 179 ancient trees for road construction. The cries of displaced birds and the destruction of their habitat struck a deep chord.
“I felt the birds were speaking to me,” Nair recalls. “That day, I vowed to create forests where no one would harm them.”
This epiphany led to the founding of Forest Creators with his friend Deepan Jain in 2014. Using corporate social responsibility (CSR) funds, Nair began planting trees—starting with 1,500 saplings on a single acre. Today, he has planted over 3.2 million trees across 12 Indian states—from Gujarat to Chhattisgarh, Rajasthan to Uttar Pradesh. His approach blends the Japanese Miyawaki method, known for rapid and dense forest growth, with a localized adaptation he calls Bharatavanam, tailored to India’s diverse ecosystems.
Smritivan: A green miracle in the Desert
Nair’s crowning achievement is Smritivan, a sprawling forest in Bhuj, Gujarat, established in memory of the 13,805 victims of the 2001 Gujarat earthquake. Originally conceived in 2004 but long stalled, the project gained new life when Nair took charge. Despite the 470-acre terrain being arid and hilly, he began planting in July 2021. “By August 2022, when Prime Minister Narendra Modi inaugurated the memorial, the forest had reached an astonishing 16 feet in height, with 223,555 saplings planted in the first phase alone. Today, Smritivan houses over 525,000 trees, with plans to add 40,000 more,” Nair says, in an interview with EdPublica.
A report from the Gujarat Ecology Commission, accessed by EdPublica, highlights Smritivan’s ecological transformation. Now home to 117 tree species, the forest supports 79 bird species, 28 types of butterflies, 21 reptiles, nine mammals, and two species of fish. The dense canopy and mulched soil prevent erosion, retain moisture, and enrich the land with organic matter. “With an 86% tree survival rate, species like neem and casuarina are flourishing,” according to the report published in 2023.

The forest has also led to localized temperature reductions, while its 50 check dams help replenish groundwater. A one-megawatt solar plant further bolsters its sustainability, making Smriti Van a global model of eco-restoration.
A report from the Gujarat Ecology Commission, accessed by EdPublica, highlights Smritivan’s ecological transformation. Now home to 117 tree species, the forest supports 79 bird species, 28 types of butterflies, 21 reptiles, nine mammals, and two species of fish
Industrialist Anand Mahindra recently shared a viral post on X, praising Nair for building the world’s largest Miyawaki forest.
Ecological impact: Restoring balance
Nair’s forests are more than green patches—they are ecological engines. “In Chhattisgarh, the coastal forest of 103,000 trees raised groundwater levels dramatically—from 160 feet to just 12 feet—reviving wells and sustaining communities,” Nair claims. Across India, his forests have restored biodiversity, attracted wildlife, and helped rebuild natural food chains.
The Gujarat Ecology Commission underscores Smriti Van’s role in carbon sequestration, a vital tool against climate change. Experts recommend ongoing assessments to quantify its carbon storage potential, which could significantly offset emissions.
Nair’s method ensures long-term ecological success. He doesn’t merely plant trees—he nurtures ecosystems. By selecting native species suited to local conditions, his forests are resilient and sustainable. They grow 10 times faster than natural forests, mimicking 150-year-old ecosystems in just 10–15 years. Dense planting (3–4 saplings per square meter) encourages vertical growth, mimicking natural competition for sunlight.
A Vision for the future
Nair’s ambition is bold: planting one billion trees by 2030. Backed by governments, corporations, and citizens, Forest Creators is scaling up to meet this audacious goal. His work has earned international acclaim, including an invitation to represent India at a NASA conference and a UNESCO Prix Versailles award for Smritivan.
Yet, Nair remains grounded—dressed in his signature white mundu, shirt, and cap—a nod to his Malayali roots and the spirit of India’s farmers.
Beyond ecology, Nair’s forests are also community spaces. Smriti Van has become a popular destination for its tranquil trails and vibrant festivals, with 94% of surveyed visitors citing its fresh air and peacefulness. Future plans include guided tours and educational programs to engage youth in environmental stewardship.
A Global inspiration
R.K. Nair’s story is a clarion call for individual action in the face of global crises. His 122 forests—especially the monumental Smritivan—showcase what one person’s vision and persistence can achieve. By restoring biodiversity, cooling urban climates, and sequestering carbon, Nair’s work supports global efforts to fight climate change. As he marches toward his billion-tree goal, he reminds us that a single seed, planted with purpose, can grow into a forest of change.
Earth
Meltwater ponds might have sheltered life during earth’s deep freeze
During this time, the planet was believed to be encased in ice, with global temperatures plummeting to as low as -50°C

In a study published in Nature Communications, scientists from MIT have proposed that shallow meltwater ponds may have provided critical refuges for early complex life during one of Earth’s most extreme ice ages — the “Snowball Earth” period, which occurred between 635 and 720 million years ago.
During this time, the planet was believed to be encased in ice, with global temperatures plummeting to as low as -50°C. Despite the harsh conditions, complex cellular life — known as eukaryotes — managed to survive. The new research suggests that these life forms could have found sanctuary in small, briny pools formed on the surface of equatorial ice sheets.
“Meltwater ponds are valid candidates for where early eukaryotes could have sheltered during these planet-wide glaciation events,” said lead author Fatima Husain, a graduate researcher in MIT’s Department of Earth, Atmospheric and Planetary Sciences, in a media statement. “This shows us that diversity is present and possible in these sorts of settings. It’s really a story of life’s resilience.”
The team drew parallels between ancient equatorial ice sheets and modern Antarctic conditions. They studied contemporary meltwater ponds on Antarctica’s McMurdo Ice Shelf — an area first dubbed “dirty ice” by explorers in the early 20th century. These ponds, formed by sun-warmed dark debris trapped within surface ice, provided a modern analog to the possible melt environments of the Cryogenian Period.
Samples taken from these Antarctic ponds revealed clear signatures of eukaryotic life. Using chemical and genetic analysis, including the identification of sterols and ribosomal RNA, the researchers detected algae, protists, and microscopic animals — all descendants of early eukaryotes. Each pond supported unique communities, with differences shaped largely by salinity levels.
“No two ponds were alike,” Husain noted. “There are repeating casts of characters, but they’re present in different abundances. We found diverse assemblages of eukaryotes from all the major groups in all the ponds studied.”
These findings suggest that meltwater ponds — overlooked in previous hypotheses — could have served as vital “above-ice oases” for survival and even diversification during Snowball Earth.
“There are many hypotheses for where life could have survived and sheltered during the Cryogenian, but we don’t have excellent analogs for all of them,” Husain explained. “Above-ice meltwater ponds occur on Earth today and are accessible, giving us the opportunity to really focus in on the eukaryotes which live in these environments.”
The study was co-authored by MIT’s Roger Summons, Thomas Evans (formerly MIT), Jasmin Millar of Cardiff University, Anne Jungblut of the Natural History Museum in London, and Ian Hawes of the University of Waikato in New Zealand.
By uncovering how life may have persisted through Earth’s frozen past, the research not only deepens understanding of our planet’s history — it may also help inform the search for life on icy worlds beyond Earth.
Earth
In ancient India, mushy earth made for perfume scent
Kannauj, a city in the Indian state of Uttar Pradesh, offers a sustainable alternative in producing perfumes using traditional modes of distillation.

A sweet scent typically lingers around in the air at Kannauj, an ancient city in India’s most populous state of Uttar Pradesh. It’s an imprint of the countless occasions when it had rained, of roses that bloomed at dawn, and of sandalwood trees that once breathed centuries of calm.. Though mushy smells are not unique to Kannauj, the city utilized traditional distillation methods to make perfume out of these earthly scents.
Kannauj has had a longstanding tradition in perfume-making since four centuries ago. The city, colloquially known as the country’s ancient perfume capital, still uses rustic copper stills, wood-fired ovens, and bamboo pipes leading to sandalwood oil-filled vessels, or attar as it is colloquially known, to make their perfume. Though it gives a pre-industrial look, a closer peek would reveal an ecosystem of complex thermal regulation, plant chemistry, sustainability science, and hydro-distillation chemistry at work.
When synthetically-made but sustainable perfumes, and AI-generated ones share the spotlight today, Kannauj’s tryst with perfumes offer an alternative, sustainable model in traditional distillation, which is inherently low-carbon, zero-waste, and follow principles of a circular economy; all in alignment with sustainable development goals.
Traditional perfume-making is naturally sustainable
In industrial processing, hydro-distillation is a commonly done to separate substances with different boiling points. Heating the liquids produce vapors, which can later be liquefied in a separate chamber. Perfumers in Kannauj follow the same practice, except it promises to be more sustainable with the copper stills, a process colloquially known as dheg-bhakpa hydro-distillation.
There’s no alcohol or synthetic agents in use. Instead, they heat up raw botanicals – such as roses, vetiver roots, jasmine, or even sunbaked clay – to precise temperatures well short of burning, thereby producing fragrant vapor. The vapors are then guided into cooling chambers, where they condense and bond with a natural fixative, often sandalwood oil. Plant residue is the only byproduct, which finds use as organic compost to cultivate another generation of crops.

Trapping earthly scent to make perfume
In the past five years, Kannauj’s veteran perfumers noticed a quiet, but steady shift in their timely harvest and produce. Rose harvests have moved earlier by weeks. Vetiver roots grow shallower due to erratic rainfall. Jasmine yields are fluctuating wildly. The local Ganges river, which influences humidity levels essential for distillation timing, is no longer as predictable. For an entire natural aromatic economy built on seasonal synchrony, this uncertainty has rung alarm bells.
“The scent of a flower depends not just on the flower itself,” Vipin Dixit, a third-generation attar-maker whose family has distilled fragrance for decades, said to EdPublica.
“It depends on the weather the night before, on the heat at sunrise, on the moisture in the air. Even the soil has a scent-memory.”

As a result, perfumers in Kannauj have begun to adapt, applying traditional wisdom through a modern scientific lens. Local distillers are now working with botanists and environmental scientists to study soil microbiomes, measure scent compounds using chromatography, and develop community-based rainwater harvesting to ensure sustainable crop health.
One of the most surprising innovations is trapping petrichor — the scent of first rain — through earth attars. Clay is baked during extreme heat waves, mimicking summer conditions, then distilled to trap the scent of rain hitting dry soil. This aroma, called mitti attar, is one of the few scents in the world created from an environmental phenomenon; and not a flower.
At a time when the world is scrambling to save biodiversity, the humble attar may become a template for green chemistry — one that doesn’t just preserve scent, but also restores the relationship between science, nature, and soul.
Earth
A Region on the Edge: Ocean Heat, Island Peril, and a Global Wake-up Call
Real-world impacts in the South-West Pacific — from disappearing glaciers to cultural erosion in Fiji — illustrate what is at stake.

In a stark warning for the world, the World Meteorological Organization (WMO) released its latest report in June first week, The State of the Climate in the South-West Pacific 2024, painting a vivid picture of escalating climate extremes across ocean and land. The report, released to coincide with the 2025 Global Platform on Disaster Risk Reduction in Geneva and ahead of the 2025 UN Ocean Conference, warns that the South-West Pacific is already grappling with the climate future the rest of the world fears.
A record-breaking Year
2024 marked the warmest year on record for the region, driven by El Niño conditions and unprecedented ocean heating. Nearly 40 million square kilometers — over 10% of the global ocean surface — was scorched by marine heatwaves.
“2024 was the warmest year on record in the South-West Pacific region. Ocean heat and acidification combined to inflict long-lasting damage to marine ecosystems and economies. Sea-level rise is an existential threat to entire island nations. It is increasingly evident that we are fast running out of time to turn the tide,” said WMO Secretary-General Prof. Celeste Saulo in a recent media statement.
The heat was not limited to oceans. Extreme temperatures shattered records in Australia and the Philippines, increasing health risks and straining already vulnerable infrastructure.
Storms, floods, and vanishing ice
The report recounts an unprecedented cyclone season in the Philippines: 12 storms in just three months, affecting over 13 million people and displacing 1.4 million. Meanwhile, Indonesia’s last tropical glacier in New Guinea may vanish by 2026. Satellite estimates show a 30-50% ice loss since 2022.
Precipitation patterns swung to extremes. While Malaysia, Indonesia, and Papua New Guinea faced above-average rainfall and floods, parts of Australia and New Zealand were parched by drought.
The ocean in crisis
The annual sea surface temperature in 2024 was the highest since records began in the early 1980s. Combined with acidification and deoxygenation, ocean warming is devastating marine life and altering storm patterns.
Worryingly, the South-West Pacific sea-level rise already exceeds the global average, threatening islands where over half the population lives within 500 meters of the coast.
Displacement and cultural loss
The Fijian island of Serua, battered by floods and eroding shores, exemplifies the dire choices communities must make.
Despite government offers to relocate, many residents resist because of their deep connection to the land, or “vanua,” a concept embedding identity, spirituality, and ancestry.
“On two separate occasions, the island experienced such extreme flooding that it was possible to cross the entire island by boat without encountering land,” the WMO report said.

Hope in anticipation: Early warnings save lives
Not all is bleak. A case study from the Philippines showcased how early warning systems and anticipatory action helped mitigate the toll of the 2024 cyclone season. The Food and Agriculture Organization’s anticipatory action teams helped relocate fishing boats and distribute cash aid ahead of the storms.
“While the frequency of tropical cyclones may decrease, their intensity will rise. Building resilience is essential,” the report warns.
A Global Response: UNOC3 Signals Change, But Action Must Follow
As the WMO’s warnings echoed, the United Nations Ocean Conference (UNOC3) concluded in Nice, France (June 9-13, 2025), providing a parallel platform of hope and accountability.
- The High Seas Treaty reached 49 ratifications, nearing the 60 needed for enforcement.
- Nearly $10 billion in funding was pledged for ocean health, though experts note that the real need is $175 billion annually.
- Countries endorsed the 30×30 conservation goal and backed measures against deep-sea mining and plastic pollution.
“We must move from plunder to protection,” said UN Secretary-General António Guterres in his closing address.
These developments reinforce the urgency of the WMO findings. Real-world impacts in the South-West Pacific — from disappearing glaciers to cultural erosion in Fiji — illustrate what is at stake.
The South-West Pacific is not a distant front line. It is the epicenter of an unfolding climate reality. With international mechanisms like the High Seas Treaty nearing activation and early warning systems proving effective, the question is no longer whether we can respond — but whether we will act in time.
As the seas rise and the clock ticks, it’s not just islands at risk. It’s the future of global climate stability.
-
Society4 months ago
Starliner crew challenge rhetoric, says they were never “stranded”
-
Space & Physics3 months ago
Could dark energy be a trick played by time?
-
Earth4 months ago
How IIT Kanpur is Paving the Way for a Solar-Powered Future in India’s Energy Transition
-
Space & Physics3 months ago
Sunita Williams aged less in space due to time dilation
-
Learning & Teaching4 months ago
Canine Cognitive Abilities: Memory, Intelligence, and Human Interaction
-
Women In Science3 months ago
Neena Gupta: Shaping the Future of Algebraic Geometry
-
Society5 months ago
Sustainable Farming: The Microgreens Model from Kerala, South India
-
Society5 months ago
DeepSeek: The Good, The Bad, and The Ugly
Pingback: World Environment Day 2025: “Beat plastic pollution.” - EDPUBLICA