Space & Physics
In search for red aurorae in ancient Japan
Ryuho Kataoka, a Japanese auroral scientist, played a seminal role in searching for evidence of super-geomagnetic storms in the past using historical methods

Aurorae seen on Earth are the end of a complex process that begins with a violent, dynamic process deep within the sun’s interior.
However, studying the depths of the sun is no easy task, even for scientists. The best they can do is to observe the surface using space-based telescopes. One problem that scientists are attempting to solve is how a super-geomagnetic storm on Earth comes to being. These geomagnetic storms find their roots in sunspots, that are acne-like depressions on the sun’s surface. As the sun approaches the peak of its 11-year solar cycle, these sunspots, numbering in the hundreds, occasionally release all that stored magnetic energy into deep space, in the form of coronal mass ejections (CMEs) (which are hot wisps of gas superheated to thousands of degrees).
Super-geomagnetic storms, a particularly worse form of geomagnetic storm, can induce power surges in our infrastructure, causing power outages that can plunge the world into darkness, and can cause irreversible damages to our infrastructure
If the earth lies in the path of an oncoming CME, the energy release from their resultant magnetic field alignment can cause intense geomagnetic storms and aurorae on Earth.
This phenomenon, which is astrophysical and also electromagnetic in nature, can have serious repercussions for our modern technological society.
Super-geomagnetic storms, a particularly worse form of geomagnetic storm, can induce power surges in our infrastructure, causing power outages that can plunge the world into darkness, and can cause irreversible damages to our infrastructure. The last recorded super-geomagnetic storm event occurred more than 150 years ago. Known as the Carrington event, the storm destroyed telegraph lines across North America and Europe in 1859. The risk for a Carrington-class event to happen again was estimated to be 1 in 500-years, which is quite low, but based on limited data. Ramifications are extremely dangerous if it were to ever happen.
However, in the past decade, it was learnt that such super-geomagnetic storms are much more common than scientists had figured. To top it all, it wasn’t just science, but it was a valuable contribution by art – specifically ancient Japanese and Chinese historical records that shaped our modern understanding of super-geomagnetic storms.

Ryuho Kataoka, a Japanese space physicist, played a seminal role in searching for evidence of super-geomagnetic storms in the past using historical methods. He is presently an associate professor in physics, holding positions at Japan’s National Institute of Polar Research, and The Graduate University for Advanced Studies.
“There is no modern digital dataset to identify extreme space weather events, particularly super-geomagnetic storms,” said Professor Kataoka. “If you have good enough data, we can input them into supercomputers to do physics-based simulation.”
However, sunspot records go until the late 18th century when sunspots were actively being cataloged. In an effort to fill the data gap, Professor Kataoka decided to be at the helm of a very new but promising interdisciplinary field combining the arts with space physics. “The data is limited by at least 50 years,” said Professor Kataoka. “So we decided to search for these red vapor events in Japanese history, and see the occurrence patterns … and if we are lucky enough, we can see detailed features in these lights, pictures or drawings.” Until the summer of 2015, Ryuho Kataoka wasn’t aware of how vast ancient Japanese and Chinese history records really were.
“There is no modern digital dataset to identify extreme space weather events, particularly super-geomagnetic storms,” said Professor Kataoka.
In the past 7 years, he’s researched a very specific red aurora, in documents extending to more than 1400 years. “Usually, auroras are known for their green colors – but during the geomagnetic storm, the situation is very different,” he said. “Red is of course unusual, but we can only see red during a powerful geomagnetic storm, especially in lower latitudes. From a scientific perspective, it’s a very reasonable way to search for red signs in historical documents.”
A vast part of these historical red aurora studies that Professor Kataoka researched came from literature explored in the last decade by the AURORA-4D collaboration. “The project title included “4D”, because we wanted to access records dating back 400 years back during the Edo period,” said Professor Kataoka.
“From the paintings, we can identify the latitude of the aurora, and calculate the magnitude or amplitude of the geomagnetic storm.” Clearly, paintings in the Edo period influenced Professor Kataoka’s line of research, for a copy of the fan-shaped red aurora painting from the manuscript Seikai (which translates to ‘stars’) hangs on the window behind his office desk at the National Institute of Polar Research.
The painting fascinated Professor Kataoka, since it depicted an aurora that originated during a super-geomagnetic storm over Kyoto in 1770. However, the painting did surprise him at first, since he wondered whether the radial patterns in the painting were real, or a mere artistic touch to make it look fierier. “That painting was special because this was the most detailed painting preserved in Japan,” remarked Professor Kataoka. “I took two years to study this, thinking this appearance was silly as an aurorae scientist. But when I calculated the field pattern from Kyoto towards the North, it was actually correct!”

Fan-shaped red aurora painting from the ‘Seikai’, dated 17th September, 1770; Picture Courtesy: Matsusaka City, Mie Prefecture.
The possibility to examine and verify historical accounts using science is also a useful incentive for scholars of Japanese literature and scientists partaking in the research.
“This is important because, if we scientists look at the real National Treasure with our eyes, we really know these sightings recorded were real,” said Professor Kataoka. “The internet is really bad for a survey because it can easily be very fake,” he said laughing. It’s not just the nature in which science was used to examine art – to examine Japanese “national treasures” that is undoubtedly appealing, but historical accounts themselves have contributed to scientific research directly.
“From our studies, we can say that the Carrington class events are more frequent than we previously expected,” said Professor Kataoka. There was a sense of pride in him as he said this. “This Carrington event is not a 1 in 200-year event, but as frequent as 1 in 100 years.” Given how electricity is the lifeblood of the 21st century, these heightened odds do ingrain a rather dystopian society in the future, that is ravaged by a super-geomagnetic storm.
Professor Kataoka’s work has found attention within the space physics community. Jonathon Eastwood, Professor of Physics at Imperial College London said to EdPublica, “The idea to use historical information and art like this is very inventive because these events are so rare and so don’t exist as information in the standard scientific record.”
There’s no physical harm from a geomagnetic storm, but the threat to global power supply and electronics is being increasingly recognized by world governments. The UK, for instance, identified “space weather” as a natural hazard in its 2011 National Risk Register. In the years that followed, the government set up a space weather division in the Met Office, the UK’s foremost weather forecasting authority, to monitor and track occurrences of these coronal mass ejections. However, these forecasts, which often supplement American predictions – namely the National Oceanic and Atmospheric Administration (NOAA) – have failed to specify previously where a magnetic storm could brew on Earth, or predict whether a coronal mass ejection would ever actually strike the Earth.
Professor Kataoka said he wishes space physicists from other countries participate in similar interdisciplinary collaborations to explore their native culture’s historical records for red aurora sightings
The former occurred during the evacuation process for Hurricane Irma in 2017, when amateur radio ham operators experienced the effects of a radio blackout when a magnetic storm affected the communications network across the Caribbean. The latter occurred on another occasion when a rocket launch for SpaceX’s Starlink communication satellites was disrupted by a mild geomagnetic storm, costing SpaceX a loss of over $40 million.
Professor Kataoka said he wishes space physicists from other countries participate in similar interdisciplinary collaborations to explore their native culture’s historical records for red aurora sightings. He said the greatest limitation of the AURORA-4D collaboration was the lack of historical records from other parts of the world. China apparently boasts a history of aurora records longer than Japan, with a history lasting before Christ himself. “Being Japanese, I’m not familiar with British, Finnish or Vietnamese cultures,” said Professor Kataoka. “But every country has literature researchers and scientists who can easily collaborate and perform interdisciplinary research.” And by doing so, it’s not just science which benefits from it, but so is ancient art whose beauty and relevance gains longevity.
Space & Physics
MIT Physicists Capture First-Ever Images of Freely Interacting Atoms in Space
The new technique allows scientists to visualize real-time quantum behavior by momentarily freezing atoms in motion and illuminating them with precisely tuned lasers

In an intriguing advancement for quantum physics, MIT researchers have captured the first images of individual atoms freely interacting in space — a feat that until now was only predicted theoretically.
The new imaging technique, developed by a team led by Professor Martin Zwierlein, allows scientists to visualize real-time quantum behavior by momentarily freezing atoms in motion and illuminating them with precisely tuned lasers. Their results, published in Physical Review Letters, reveal how bosons bunch together and fermions pair up in free space — phenomena crucial to understanding superconductivity and other quantum states of matter.
“We are able to see single atoms in these interesting clouds of atoms and what they are doing in relation to each other, which is beautiful,” said Zwierlein in a press statement.
Using their method — called “atom-resolved microscopy” — the team was able to trap atom clouds with a loose laser, briefly immobilize them with a lattice of light, and then image their positions via fluorescence. This approach allowed the researchers to observe quantum behaviors at the level of individual atoms for the first time.
The MIT group directly visualized sodium atoms (bosons) bunching together in a shared quantum wave — a vivid confirmation of the de Broglie wave theory — and lithium atoms (fermions) pairing up despite their natural repulsion, a key mechanism underlying superconductivity.
“This kind of pairing is the basis of a mathematical construction people came up with to explain experiments. But when you see pictures like these, it’s showing in a photograph, an object that was discovered in the mathematical world,” said co-author Richard Fletcher in a press statement.
Two other research teams — one led by Nobel laureate Wolfgang Ketterle at MIT, and another by Tarik Yefsah at École Normale Supérieure — also reported similar quantum imaging breakthroughs in the same journal issue, marking a significant moment in the experimental visualization of quantum mechanics.
The MIT team plans to expand the technique to probe more exotic quantum behaviors, including quantum Hall states. “Now we can verify whether these cartoons of quantum Hall states are actually real,” Zwierlein added. “Because they are pretty bizarre states.”
Space & Physics
Indian Researchers Develop Breakthrough Metal-Free Catalyst for Green Hydrogen Production

In a major scientific breakthrough, researchers at Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bengaluru, India, have developed a novel, cost-effective, metal-free porous organic catalyst that enables efficient hydrogen (H₂) production by harnessing mechanical energy. This innovative work could provide a significant boost to India’s National Green Hydrogen Mission and global efforts toward clean energy.
The team, led by Professor Tapas K. Maji from the Chemistry and Physics of Materials Unit at JNCASR—an autonomous institution under the Department of Science & Technology, Government of India—has designed a donor-acceptor-based covalent-organic framework (COF) that functions as a highly efficient piezocatalyst for water splitting. The findings have been published in the journal Advanced Functional Materials.

“This discovery breaks the traditional notion of solely employing heavy or transition metal-based ferroelectric materials as piezocatalysts for catalyzing water splitting reaction,” said Professor Maji in a press statement.
The COF, constructed using the donor molecule tris(4-aminophenyl)amine (TAPA) and the acceptor molecule pyromellitic dianhydride (PDA), showcases unique ferrielectric (FiE) ordering. Unlike conventional ferroelectric materials, which have limited surface charge and rapidly reach saturation, this FiE structure dramatically enhances the number of charge carriers within the framework’s porous surface. This enables more effective diffusion and interaction of water molecules, resulting in ultra-high hydrogen production yields.
Prof. Umesh V. Waghmare and his team, also at JNCASR, conducted theoretical analyses confirming that the COF’s unusual electronic structure fosters dipolar ordering, leading to lattice instability and FiE behavior. “These FiE dipoles interact with the flexible twisting molecular motion in the material, making them responsive to mechanical pressure,” said Prof. Waghmare. “As a result, the material can generate electron-hole pairs when mechanically stimulated, making it a highly efficient piezocatalyst.”
The research team also includes Ms. Adrija Ghosh, Ms. Surabhi Menon, Dr. Sandip Biswas, and Dr. Anupam Dey from JNCASR, with significant contributions from Dr. Supriya Sahoo and Prof. Ramamoorthy Boomishankar at IISER Pune, and Prof. Jan K. Zaręba from Wrocław University of Science and Technology, Poland.
The innovation offers a promising alternative to traditional oxide-based piezocatalysts and represents a leap forward in the sustainable production of hydrogen fuel. “The utilization of a cost-effective, metal-free system with a high production rate of H2 by harvesting mechanical energy opens up a new route to green H2 based on porous heterogeneous catalysts,” added Prof. Maji.
Space & Physics
Engineers Edge Closer to Practical, Fault-Tolerant Quantum Machines
The findings demonstrate the foundational physics needed to achieve ultra-fast quantum readout, an essential step toward scalable and fault-tolerant quantum systems

In a breakthrough that could accelerate the future of quantum computing, researchers at MIT have demonstrated the strongest nonlinear light-matter coupling ever recorded in a quantum system — a development that may enable quantum operations and measurements in mere nanoseconds.
This leap forward hinges on a novel superconducting circuit design featuring a device called the quarton coupler, invented by lead researcher Yufeng “Bright” Ye, PhD ’24. The technology enables interaction between photons (particles of light that carry quantum information) and artificial atoms (units that store quantum data), which is central to the speed and accuracy of quantum computers.
“Usually, you have to measure results between rounds of error correction, and slow readout can become a bottleneck,” Ye explained. “This could dramatically accelerate progress toward fault-tolerant quantum computing and practical real-world applications.”
Working with senior author Kevin O’Brien, associate professor and principal investigator at MIT’s Research Laboratory of Electronics, the team connected the quarton coupler to two superconducting qubits on a chip. One served as a photon emitter and the other as a storage atom, enabling extremely strong nonlinear interactions — about ten times stronger than previous demonstrations.
This means a quantum processor could potentially perform tenfold faster operations, allowing scientists to run more quantum error corrections during the brief window when qubits remain coherent. Error correction is essential in quantum computing, where fragile quantum states are easily disrupted.
The team’s findings, published in Nature Communications, demonstrate the foundational physics needed to achieve ultra-fast quantum readout, an essential step toward scalable and fault-tolerant quantum systems.
While this remains a proof of concept, researchers are now working to integrate additional electronic components — such as filters — to build practical readout circuits compatible with full-scale quantum systems. The team also reported success in achieving strong matter-matter coupling between qubits, which could further enhance future quantum operations.
“This isn’t the end — it’s the beginning of a new phase,” said O’Brien. “We now have a powerful physical tool, and the next step is engineering it into something that can be part of a real quantum computer.”
As scientists push toward building large-scale quantum processors, innovations like the quarton coupler bring them closer to unlocking new materials, revolutionizing machine learning, and solving problems beyond the reach of today’s fastest supercomputers.
-
Earth2 months ago
How IIT Kanpur is Paving the Way for a Solar-Powered Future in India’s Energy Transition
-
Space & Physics6 months ago
How Shyam Gollakota is revolutionizing mobile systems and healthcare with technology
-
Space & Physics1 month ago
Could dark energy be a trick played by time?
-
Society2 months ago
Starliner crew challenge rhetoric, says they were never “stranded”
-
EDUNEWS & VIEWS5 months ago
“One Nation, One Subscription” is a welcome step, in light of publishers’ apathy
-
Space & Physics4 months ago
Obituary: R. Chidambaram, Eminent Physicist and Architect of India’s Nuclear Program
-
Know The Scientist6 months ago
Pierre Curie: The precision of a scientific pioneer
-
Society6 months ago
Rebranding Bhutan: A case study in transforming identity