Connect with us

Space & Physics

Obituary: R. Chidambaram, Eminent Physicist and Architect of India’s Nuclear Program

Rajagopala Chidambaram (1936–2025), a man whose work shaped the future of modern India, will always be remembered as the chief architect of India’s nuclear journey.

Published

on

Rajagopala Chidambaram, a world-class physicist and the chief architect of India’s nuclear program, passed away on January 4, 2025, at the age of 88. Renowned for his unparalleled contributions to India’s nuclear defense and energy security, Chidambaram leaves a profound legacy in both the scientific community and the nation’s strategic defense apparatus.

Born on November 11, 1936, in India, Dr. Chidambaram was an alumnus of Presidency College, Chennai, Tamil Nadu, and the Indian Institute of Science, Bengaluru, Karnataka. His academic background, coupled with his innate curiosity and vision, led him to become one of India’s foremost scientific minds. Throughout his illustrious career, Dr. Chidambaram played an instrumental role in shaping India’s nuclear capabilities, overseeing both the Pokhran-I (1974) and Pokhran-II (1998) nuclear tests, which cemented India’s position as a nuclear power on the world stage.

As a physicist, Dr. Chidambaram’s groundbreaking research in high-pressure physics, crystallography, and materials science greatly advanced the understanding of these fields. His pioneering work laid the foundation for modern materials science research in India, contributing to the nation’s scientific progress in multiple areas. His expertise in these complex disciplines not only bolstered India’s nuclear research but also advanced its technological prowess.

In addition to his work in nuclear weapons development, Dr. Chidambaram made significant strides in nuclear energy, ensuring that India remained at the forefront of scientific and technological advancements. As Director of the Bhabha Atomic Research Centre (BARC) and later as Chairman of the Atomic Energy Commission of India, he was integral to India’s peaceful nuclear energy initiatives. As Principal Scientific Adviser to the Government of India, Dr. Chidambaram guided national policies on defense, energy, and nuclear research, shaping the future of India’s scientific endeavors.

He was a vital member of the team that conducted India’s first nuclear test, Smiling Buddha, at Pokhran in 1974. His leadership during the Pokhran-II tests in 1998, which confirmed India’s nuclear deterrent, was a defining moment in the nation’s history. Chidambaram’s steadfast commitment to India’s defense and scientific advancement earned him respect both at home and abroad.

Rajagopala Chidambaram captured during the session ‘Innovative India’ at the Annual Meeting 2008 of the World Economic Forum in Davos, Switzerland. Copyright by World Economic Forum/Photo by Monika Flueckiger

A visionary leader, Dr. Chidambaram believed in the power of science and technology to drive national development. His efforts were instrumental in championing key initiatives in energy, healthcare, and strategic self-reliance. He steered numerous projects that significantly advanced India’s science and technology landscape. Notably, he played a central role in the indigenous development of supercomputers and was the driving force behind the conceptualization of the National Knowledge Network, which connected research and educational institutions across India.

Dr. Chidambaram was also an ardent advocate for the application of science and technology to improve societal conditions. He established the Rural Technology Action Groups and the Society for Electronic Transactions and Security, among other programs. His emphasis on “Coherent Synergy” in India’s scientific efforts helped foster collaboration across various disciplines, accelerating the country’s scientific growth.

On the global stage, Dr. Chidambaram served as the Chairman of the Board of Governors of the International Atomic Energy Agency (IAEA) in 1994-1995 and contributed to several high-level international nuclear discussions. His expertise was sought worldwide, and in 2008, he was appointed to the Commission of Eminent Persons by the IAEA to assess the agency’s role in nuclear governance.

He was a vital member of the team that conducted India’s first nuclear test, Smiling Buddha, at Pokhran in 1974

In recognition of his exceptional contributions to science and national development, Dr. Chidambaram received several prestigious accolades, including the Padma Shri in 1975 and the Padma Vibhushan in 1999. He was also awarded honorary doctorates from several universities and was a fellow of several eminent Indian and international scientific academies.

Dr. Chidambaram’s passing marks the end of an era for India’s nuclear program and the global scientific community. His legacy as a scientist, visionary leader, and architect of India’s nuclear journey will continue to inspire future generations. His contributions to national security, energy, and technological innovation have left an indelible mark on India’s scientific and strategic landscape.

Rajagopala Chidambaram’s profound impact on India’s nuclear and scientific trajectory will be remembered for generations to come. His work in advancing both national defense and the peaceful use of nuclear energy stands as a testament to his vision of a self-reliant, scientifically empowered India.

“Deeply saddened by the demise of Dr Rajagopala Chidambaram. He was one of the key architects of India’s nuclear programme and made ground-breaking contributions in strengthening India’s scientific and strategic capabilities. He will be remembered with gratitude by the whole nation and his efforts will inspire generations to come,” Prime Minister Narendra Modi wrote on X.

Dr. Ajit Kumar Mohanty, Secretary, Department of Atomic Energy, in a statement issued, said,  “Dr. Chidambaram was a doyen of science and technology whose contributions furthered India’s nuclear prowess and strategic self-reliance. His loss is an irreparable one for the scientific community and the nation.”

Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *

Space & Physics

New double-slit experiment proves Einstein’s predictions were off the mark

Results from an idealized version of the Young double-slit experiment has upheld key predictions from quantum theory.

Published

on

Two individual atoms suspended in a vacuum chamber are illuminated by a laser beam, serving as the two slits. Scattered light interference is captured by a highly sensitive camera shown as a screen. Credit: Courtesy of the researchers/MIT
  • MIT physicists perform the most idealized double-slit experiment to date, using individual atoms as slits.
  • Experiment confirms the quantum duality of light: light behaves as both a particle and a wave, but both behaviors can’t be observed simultaneously.
  • Findings disprove Albert Einstein’s century-old prediction regarding detecting a photon’s path alongside its wave nature.

In a study published in Physical Reviews Letters on July 22, researchers at MIT have realized an idealized version of the famous double-slit experiment in quantum physics yet.

The double-slit experiment—first devised in 1801 by the British physicist Thomas Young—remains a perplexing aspect of reality. Light waves passing through two slits, form interference patterns on a wall placed behind. But this phenomenon is at odds with the fact light also behaves as particles. The contradiction has lent itself to a paradox, which sits at the foundation of quantum mechanics. It has sparked a historic scientific duel nearly a century ago, between physics heavyweights Albert Einstein and Niels Bohr. The study’s findings have now settled the decades-old debate, showing Einstein’s predictions were off the mark.

Einstein had suggested that by detecting the force exerted when a photon passes through a slit—a nudge akin to a bird brushing past a leaf—scientists could witness both light’s wave and particle properties at once. Bohr countered with the argument that observing a photon’s path would inevitably erase its wave-like interference pattern, a tenet since embraced by quantum theory.

The MIT team stripped the experiment to its purest quantum elements. Using arrays of ultracold atoms as their slits and weak light beams to ensure only one photon scattered per atom, they tuned the quantum states of each atom to control the information gained about a photon’s journey. Every increase in “which-path” information reduced the visibility of the light’s interference pattern, flawlessly matching quantum theory and further debunking Einstein’s proposal.

“Einstein and Bohr would have never thought that this is possible, to perform such an experiment with single atoms and single photons,” study senior author and Nobel laureate, Wolfgang Ketterle, stated in a press release. “What we have done is an idealized Gedanken (thought) experiment.”

In a particularly stunning twist, Ketterle’s group also disproved the necessity of a physical “spring”—a fixture in Einstein’s original analogy—by holding their atomic lattice not with springs, but with light. When they briefly released the atoms, effectively making the slits “float” in space, the same quantum results persisted. “In many descriptions, the springs play a major role. But we show, no, the springs do not matter here; what matters is only the fuzziness of the atoms,” commented MIT researcher Vitaly Fedoseev in a media statement. “Therefore, one has to use a more profound description, which uses quantum correlations between photons and atoms.”

The paper arrives as the world prepares for 2025’s International Year of Quantum Science and Technology — marking 100 years since the birth of quantum mechanics. Yoo Kyung Lee, a fellow co-author, noted in a media statement, “It’s a wonderful coincidence that we could help clarify this historic controversy in the same year we celebrate quantum physics.”

Continue Reading

Space & Physics

Researchers Uncover New Way to Measure Hidden Quantum Interactions in Materials

Published

on

Image credit: Pixabay

A team of MIT scientists has developed a theory-guided strategy to directly measure an elusive quantum property in semiconductors — the electron-phonon interaction — using an often-ignored effect in neutron scattering.

Their approach, published this week in Materials Today Physics, reinterprets an interference effect, typically considered a nuisance in experiments, as a valuable signal. This enables researchers to probe electron-phonon interactions — a key factor influencing a material’s thermal, electrical, and optical behaviour — which until now have been extremely difficult to measure directly.

“Rather than discovering new spectroscopy techniques by pure accident, we can use theory to justify and inform the design of our experiments and our physical equipment,” said Mingda Li, senior author and associate professor at MIT, in a media statement.

By engineering the interference between nuclear and magnetic interactions during neutron scattering, the team demonstrated that the resulting signal is directly proportional to the electron-phonon coupling strength.

“Being able to directly measure the electron-phonon interaction opens the door to many new possibilities,” said MIT graduate student Artittaya Boonkird.

While the current setup produced a weak signal, the findings lay the groundwork for next-generation experiments at more powerful facilities like Oak Ridge National Laboratory’s proposed Second Target Station. The team sees this as a shift in materials science — using theoretical insights to unlock previously “invisible” properties for a range of advanced technologies, from quantum computing to medical devices.

Continue Reading

Space & Physics

Dormant Black Holes Revealed in Dusty Galaxies Through Star-Shredding Events

Published

on

Image credit: NRAO/AUI/NSF/NASA

In a major discovery, astronomers at MIT, Columbia University, and other institutions have used NASA’s James Webb Space Telescope (JWST) to uncover hidden black holes in dusty galaxies that violently “wake up” only when an unsuspecting star wanders too close.

The new study, published in Astrophysical Journal Letters, marks the first time JWST has captured clear signatures of tidal disruption events (TDEs) — catastrophic episodes where a star is torn apart by a galaxy’s central black hole, emitting a dramatic burst of energy.

“These are the first JWST observations of tidal disruption events, and they look nothing like what we’ve ever seen before,” said lead author Megan Masterson, a graduate student at MIT’s Kavli Institute for Astrophysics and Space Research. “We’ve learned these are indeed powered by black hole accretion, and they don’t look like environments around normal active black holes.”

Until now, nearly all TDEs detected since the 1990s were found in relatively dust-free galaxies using X-ray or optical telescopes. However, researchers suspected many more events remained hidden behind thick clouds of galactic dust. JWST’s powerful infrared vision has finally confirmed their hunch.

By analyzing four galaxies previously flagged as likely TDE candidates, the team detected distinct infrared fingerprints of black hole accretion — the process of material spiraling into a black hole, producing intense radiation. These signatures, invisible to optical telescopes, revealed that all four events stemmed not from persistently active black holes but dormant ones, roused only when a passing star came too close.

“There’s nothing else in the universe that can excite this gas to these energies, except for black hole accretion,” Masterson noted.

Among the four signals studied was the closest TDE ever detected, located 130 million light-years away. Another showed an initial optical flash that scientists had earlier suspected to be a supernova. JWST’s readings helped clarify the true cause.

“These four signals were as close as we could get to a sure thing,” said Masterson. “But the JWST data helped us say definitively these are bonafide TDEs.”

To determine whether the central black holes were inherently active or momentarily triggered by a star’s disruption, the team also mapped the dust patterns around them. Unlike the thick, donut-shaped clouds typical of active galaxies, these dusty environments appeared markedly different — further confirming the black holes were usually dormant.

“Together, these observations say the only thing these flares could be are TDEs,” Masterson said in a media statement.

The findings not only validate JWST’s unprecedented ability to study hidden cosmic phenomena but also open new pathways for understanding black holes that lurk quietly in dusty galactic centers — until they strike.

With future observations planned using JWST, NEOWISE, and other infrared tools, the team hopes to catalog many more such events. These cosmic feeding frenzies, they say, could unlock key clues about black hole mass, spin, and the very nature of their environments.

“The actual process of a black hole gobbling down all that stellar material takes a long time,” Masterson added. “And hopefully we can start to probe how long that process takes and what that environment looks like. No one knows because we just started discovering and studying these events.”

Continue Reading

Trending