Connect with us

Space & Physics

IIT Kanpur Unveils World’s First BCI-Based Robotic Hand Exoskeleton for Stroke Rehabilitation

The BCI-based robotic hand exoskeleton utilizes a unique closed-loop control system to actively engage the patient’s brain during therapy

Published

on

Image credit: By Special arrangement

The Indian Institute of Technology Kanpur (IITK) has unveiled the world’s first Brain-Computer Interface (BCI)-based Robotic Hand Exoskeleton, a groundbreaking innovation set to revolutionize stroke rehabilitation. This technology promises to accelerate recovery and improve patient outcomes by redefining post-stroke therapy. Developed over 15 years of rigorous research led by Prof. Ashish Dutta from IIT Kanpur’s Department of Mechanical Engineering, the project was supported by India’s Department of Science and Technology (DST), UK India Education and Research Initiative (UKIERI), and the Indian Council of Medical Research (ICMR).

The BCI-based robotic hand exoskeleton utilizes a unique closed-loop control system to actively engage the patient’s brain during therapy. It integrates three key components: a Brain-Computer Interface that captures EEG signals from the motor cortex to detect the patient’s intent to move, a robotic hand exoskeleton that assists with therapeutic hand movements, and software that synchronizes brain signals with the exoskeleton for real-time feedback. This coordination helps foster continuous brain engagement, leading to faster and more effective recovery.

“Stroke recovery is a long and often uncertain process. Our device bridges the gap between physical therapy, brain engagement, and visual feedback creating a closed-loop control system that activates brain plasticity, which is the brain’s ability to change its structure and function in response to stimuli,” said Prof. Ashish Dutta. “This is especially significant for patients whose recovery has plateaued, as it offers renewed hope for further improvement and regaining mobility. With promising results in both India and the UK, we are optimistic that this device will make a significant impact in the field of neurorehabilitation.”

Traditional stroke recovery often faces challenges, especially when motor impairments stem from damage to the motor cortex. Conventional physiotherapy methods may fall short due to limited brain involvement. The new device addresses this gap by linking brain activity with physical movement. During therapy, patients are guided on-screen to perform hand movements, such as opening or closing their fist, while EEG signals from the brain and EMG signals from the muscles are used to activate the robotic exoskeleton in an assist-as-required mode. This synchronization ensures the brain, muscles, and visual engagement work together, improving recovery outcomes.

Pilot clinical trials, conducted in collaboration with Regency Hospital in India and the University of Ulster in the UK, have yielded impressive results. Remarkably, eight patients—four in India and four in the UK—who had reached a recovery plateau one or two years post-stroke achieved full recovery through the BCI-based robotic therapy. The device’s active engagement of the brain during therapy has proven to lead to faster and more comprehensive recovery compared to traditional physiotherapy.

While stroke recovery is typically most effective within the first six to twelve months, this innovative device has demonstrated its ability to facilitate recovery even beyond this critical period. With large-scale clinical trials underway at Apollo Hospitals in India, the device is expected to be commercially available within three to five years, offering new hope for stroke patients worldwide.

Space & Physics

MIT unveils an ultra-efficient 5G receiver that may supercharge future smart devices

A key innovation lies in the chip’s clever use of a phenomenon called the Miller effect, which allows small capacitors to perform like larger ones

Published

on

Image credit: Mohamed Hassan from Pixabay

A team of MIT researchers has developed a groundbreaking wireless receiver that could transform the future of Internet of Things (IoT) devices by dramatically improving energy efficiency and resilience to signal interference.

Designed for use in compact, battery-powered smart gadgets—like health monitors, environmental sensors, and industrial trackers—the new chip consumes less than a milliwatt of power and is roughly 30 times more resistant to certain types of interference than conventional receivers.

“This receiver could help expand the capabilities of IoT gadgets,” said Soroush Araei, an electrical engineering graduate student at MIT and lead author of the study, in a media statement. “Devices could become smaller, last longer on a battery, and work more reliably in crowded wireless environments like factory floors or smart cities.”

The chip, recently unveiled at the IEEE Radio Frequency Integrated Circuits Symposium, stands out for its novel use of passive filtering and ultra-small capacitors controlled by tiny switches. These switches require far less power than those typically found in existing IoT receivers.

A key innovation lies in the chip’s clever use of a phenomenon called the Miller effect, which allows small capacitors to perform like larger ones. This means the receiver achieves necessary filtering without relying on bulky components, keeping the circuit size under 0.05 square millimeters.

Credit: Courtesy of the researchers/MIT News

Traditional IoT receivers rely on fixed-frequency filters to block interference, but next-generation 5G-compatible devices need to operate across wider frequency ranges. The MIT design meets this demand using an innovative on-chip switch-capacitor network that blocks unwanted harmonic interference early in the signal chain—before it gets amplified and digitized.

Another critical breakthrough is a technique called bootstrap clocking, which ensures the miniature switches operate correctly even at a low power supply of just 0.6 volts. This helps maintain reliability without adding complex circuitry or draining battery life.

The chip’s minimalist design—using fewer and smaller components—also reduces signal leakage and manufacturing costs, making it well-suited for mass production.

Looking ahead, the MIT team is exploring ways to run the receiver without any dedicated power source—possibly by harvesting ambient energy from nearby Wi-Fi or Bluetooth signals.

The research was conducted by Araei alongside Mohammad Barzgari, Haibo Yang, and senior author Professor Negar Reiskarimian of MIT’s Microsystems Technology Laboratories.

Continue Reading

Society

Ahmedabad Plane Crash: The Science Behind Aircraft Take-Off -Understanding the Physics of Flight

Take-off is one of the most critical phases of flight, relying on the precise orchestration of aerodynamics, propulsion, and control systems. Here’s how it works:

Published

on

On June 12, 2025, a tragic aviation accident struck Ahmedabad, India when a regional passenger aircraft, Air India flight A1-171, crashed during take-off at Sardar Vallabhbhai Patel International Airport. According to preliminary reports, the incident resulted in over 200 confirmed casualties, including both passengers and crew members, and several others are critically injured. The aviation community and scientific world now turn their eyes not just toward the cause but also toward understanding the complex science behind what should have been a routine take-off.

How Do Aircraft Take Off?

Take-off is one of the most critical phases of flight, relying on the precise orchestration of aerodynamics, propulsion, and control systems. Here’s how it works:

1. Lift and Thrust

To leave the ground, an aircraft must generate lift, a force that counters gravity. This is achieved through the unique shape of the wing, called an airfoil, which creates a pressure difference — higher pressure under the wing and lower pressure above — according to Bernoulli’s Principle and Newton’s Third Law.

Simultaneously, engines provide thrust, propelling the aircraft forward. Most commercial jets use turbofan engines, which accelerate air through turbines to generate power.

2. Critical Speeds

Before takeoff, pilots calculate critical speeds:

  • V1 (Decision Speed): The last moment a takeoff can be safely aborted.
  • Vr (Rotation Speed): The speed at which the pilot begins to lift the nose.
  • V2 (Takeoff Safety Speed): The speed needed to climb safely even if one engine fails.

If anything disrupts this process — like bird strikes, engine failure, or runway obstructions — the results can be catastrophic.

Environmental and Mechanical Challenges

Factors like wind shear, runway surface condition, mechanical integrity, or pilot error can interfere with safe take-off. Investigators will be analyzing these very aspects in the Ahmedabad case.

The Bigger Picture

Take-off accounts for a small fraction of total flight time but is disproportionately associated with accidents — approximately 14% of all aviation accidents occur during take-off or initial climb.

Continue Reading

Space & Physics

MIT claims breakthrough in simulating physics of squishy, elastic materials

In a series of experiments, the new solver demonstrated its ability to simulate a diverse array of elastic behaviors, ranging from bouncing geometric shapes to soft, squishy characters

Published

on

Image credit: Courtesy of researchers

Researchers at MIT claim to have unveiled a novel physics-based simulation method that significantly improves stability and accuracy when modeling elastic materials — a key development for industries spanning animation, engineering, and digital fabrication.

In a series of experiments, the new solver demonstrated its ability to simulate a diverse array of elastic behaviors, ranging from bouncing geometric shapes to soft, squishy characters. Crucially, it maintained important physical properties and remained stable over long periods of time — an area where many existing methods falter.

Other simulation techniques frequently struggled in tests: some became unstable and caused erratic behavior, while others introduced excessive damping that distorted the motion. In contrast, the new method preserved elasticity without compromising reliability.

“Because our method demonstrates more stability, it can give animators more reliability and confidence when simulating anything elastic, whether it’s something from the real world or even something completely imaginary,” Leticia Mattos Da Silva, a graduate student at MIT’s Department of Electrical Engineering and Computer Science, said in a media statement.

Their study, though not yet peer-reviewed or published, will be presented at the August proceedings of the SIGGRAPH conference in Vancouver, Canada.

While the solver does not prioritize speed as aggressively as some tools, it avoids the accuracy and robustness trade-offs often associated with faster methods. It also sidesteps the complexity of nonlinear solvers, which are commonly used in physics-based approaches but are often sensitive and prone to failure.

Looking ahead, the research team aims to reduce computational costs and broaden the solver’s applications. One promising direction is in engineering and fabrication, where accurate elastic simulations could enhance the design of real-world products such as garments, medical devices, and toys.

“We were able to revive an old class of integrators in our work. My guess is there are other examples where researchers can revisit a problem to find a hidden convexity structure that could offer a lot of advantages,” Mattos Da Silva added.

The study opens new possibilities not only for digital content creation but also for practical design fields that rely on predictive simulations of flexible materials.

Continue Reading

Trending