Connect with us

EDUNEWS & VIEWS

Why We Must Challenge Stereotypes to Open Science Careers for Girls

Efforts should be made to raise awareness about the contributions of women in science and to challenge stereotypes that discourage girls from pursuing science careers

Dr Claudia Ntsapi

Published

on

Illustration credit: Canva

While there has been significant progress in increasing the participation of women in science-related disciplines, studies have confirmed that men continue to dominate science, technology, engineering, and mathematics (STEM) careers. Despite the gains in women’s participation in science careers in countries including South Africa, women remain underrepresented in these fields. This gender disparity is further heightened among Black women.

Although women represent the majority of young university graduates in South Africa, only 13% of STEM graduates are women, with Black women being significantly underrepresented in higher academic and research leadership positions. This can be attributed to systemic barriers such as gender bias, lack of mentorship, and limited access to resources, which continue to hinder true equality in science careers. 

At our institution, the University of the Free State (UFS), there is an increasing commitment to support emerging researchers, especially women, through mentorship and research development opportunities. This is part of our institution’s Vision 130, which aspires to foster excellence in research and increase the impact of our scholars on the broader societal context. I am privileged to be one of the selected candidates in our institution’s Transformation of the Professoriate Mentoring Programme, which aims to grow a critical mass of excellent emerging scholars at the UFS. This programme equips all its candidates with both academic and research mentorship to advance their development towards assuming senior academic and research positions. More importantly, this programme supports candidates in accessing networking and funding opportunities, contributing to their establishment as researchers with the potential to create centres of research excellence in the future. My hope is that those of us who have access to such opportunities can also use our privilege and positions to mentor more women researchers from underrepresented groups in the various fields of science.

“Although women represent the majority of young university graduates in South Africa, only 13% of STEM graduates are women, with Black women being significantly underrepresented in higher academic and research leadership positions

To improve the participation of more women in science-related careers, it is crucial to address the systemic barriers that hinder their progress. This includes creating more mentorship and networking opportunities for women, providing financial support and scholarships for female students in science career fields, and implementing national policies that promote work-life balance and support for working mothers.

Additionally, efforts should be made to raise awareness about the contributions of women in science and to challenge stereotypes that discourage girls from pursuing science careers. Encouraging more inclusive and diverse work environments where women feel valued and supported is essential for increasing their participation and retention in science careers. There is also a need for progressive policies that promote the employment of Black women academics in positions of authority in STEM fields. This will ensure the availability of a diversity of women mentors and academics to offer gender-sensitive support to students.

(As told to Dipin Damodharan)

Dr Ntsapi, PhD, is a registered Natural Scientist (Pri. Sci. Nat) with the South African Council for Natural Scientific Professions. She is a lecturer at the Department of Basic Medical Sciences, University of the Free State, South Africa. Dr Ntsapi leads the NeuroCancer Research Group, overseeing a multidisciplinary team specialising in cell biology, cell physiology, microscopy, biochemistry, and pharmaceutical methodologies.

Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *

EDUNEWS & VIEWS

India is not in competition with any other nation: ISRO Chief

ISRO Chief V. Narayanan urges youth to lead India’s technological revolution

Published

on

ISRO Chairman V. Narayanan

In a powerful address at the 8th edition of the Chhatra Sansad India Conclave (CSI), ISRO (Indian Space Research Organisation) Chairman V. Narayanan inspired over 20,000 young minds to push boundaries and take India to new heights in space exploration and scientific innovation. His message was clear: the nation’s future in technology will be shaped by the youth, and they are crucial in propelling India to the forefront of global advancements.

In his keynote, V. Narayanan, Chairman of ISRO, spoke about India’s ongoing strides in space exploration. He emphasized that India is not in competition with any other nation but is focused solely on advancing its own technological progress. “India’s future is in the hands of its youth. You are the driving force behind the country’s technological and scientific transformation,” Narayanan said, calling for continued innovation in space research.

The conclave, held at Lovely Professional University, gathered influential leaders, policymakers, and thinkers under the theme “Vision India 2047: Bharat @ 100.” The event was a platform for dynamic conversations about India’s growth and the role youth will play in shaping the nation’s future as it approaches its centenary of independence.

Dr. Ashok Kumar Mittal, Member of Indian Parliament and Founder Chancellor of LPU, set the tone for the event, urging the youth to embrace their power to reshape India’s trajectory. He highlighted LPU’s commitment to nurturing future leaders who will lead the country in global arenas.

Dr. Ashok Kumar Mittal, Member of Parliament and Founder Chancellor of LPU giving memento to social reformerDr. Maulana Kalbe Rushaid Rizvi, during Chhatra Sansad India Conclave at LPU

Other prominent speakers at the conclave included Smriti Irani, former Union Minister, who encouraged the youth to leverage their talents to build businesses and enterprises that would drive India’s economic future. Motivational speaker Jaya Kishori inspired attendees to embody discipline, values, and purpose-driven action, while Temjen Imna Along, Minister of Tourism & Higher Education for Nagaland, spoke of an inclusive India where progress benefits all regions and communities.

The event also saw insightful video messages from several distinguished figures, including Nitin Gadkari, India’s Union Minister for Road Transport and Highways, and Vikrant Massey, Indian actor, emphasizing the role of youth in the ongoing digital revolution and India’s rise on the global stage.

A key feature of the conclave was a thought-provoking debate on “One Nation, One Election,” which sparked discussions on the potential impact of a unified electoral system on India’s future governance. The debate, chaired by Maulana Kalbe Rushaid Rizvi, allowed students to actively contribute their views on shaping India’s democratic structure.

Continue Reading

EDUNEWS & VIEWS

‘Blue Ghost’ soft-lands on the moon in one shape

With Blue Ghost’s successful soft-landing, Firefly Aerospace has become only the first private company ever to have a lunar probe intact on the lunar surface.

Published

on

The Blue Ghost's shadow looms over the foreground in the image | Credit: NASA/Firefly Aerospace

On March 2, NASA confirmed the first ever successful soft-landing attempt by a private company. Firefly Aerospace’s lunar lander, the Blue Ghost Mission 1 (named after a rare species of fireflies thought native to the United States), touched down at precisely 2.04 p.m. IST, near Mons Latrielle at Mare Crisium on the moon’s near side. Firefly Aerospace issued a press release shortly thereafter.

The soft-landing comes after another US-based private company, Intuitive Machines, attempted one a year ago. On that occasion however, the lander, known as Odyssey, bounced off hard on the lunar surface at touchdown, following a steep descent. It rested titled with a stray lunar rock to offer a shoulder. In contrast, Blue Ghost which stuck both an upright landing, and its payloads intact.

The landing was the culmination of a 45 day trip that began early this year. On January 15, Blue Ghost blasted to space aboard a SpaceX’s Falcon 9 Block 5 from NASA’s Kennedy Space Centre, Florida. Sharing space during the launch was yet another commercial lunar lander, the Hakuto-R Mission 2  – built and operated by the Japanese space technology company, ispace. However, Hakuto-R has a projected landing date on the moon sometime in April, owing to a different arrival approach.

Firefly had released pictures of the lunar terrain, the Blue Ghost‘s photographed from its landing site. One of them shows a rugged gray dusty terrain, with a portion of the lander’s chassis in view in the foreground. Whereas a second one showed a desolate terrain with the earth reflecting sunlight above the horizon. Blue Ghost‘s shadow looms in the foreground in the image.

This site located close to Mons Latrielle, is what scientists think is an ancient basin formed upon a rogue asteroid impact eons ago. More than 500 km wide, Mare Crisium, as the basin is known by, is believed to have been flooded by lava in volcanic eruptions dating to some 4 billion years ago.

The SpaceX Falcon 9 rocket that carried Firefly Aerospace’s lunar lander, Blue Ghost Mission 1, is seen stationed here at NASA’s Kennedy Space Center, Florida | Credit: NASA

Laying groundwork for NASA’s Artemis

“Firefly is literally and figuratively over the Moon,” Jason Kim, CEO of Firefly Aerospace, said shortly after the landing, in a press release.  “Our Blue Ghost lunar lander now has a permanent home on the lunar surface with 10 NASA payloads and a plaque with every Firefly employee’s name. This bold, unstoppable team has proven we’re well equipped to deliver reliable, affordable access to the Moon, and we won’t stop there. With annual lunar missions, Firefly is paving the way for a lasting lunar presence that will help unlock access to the rest of the solar system for our nations, our partners, and the world.”

In 2023, Firefly Aerospace ferried the instruments as part of a $93.3 million contract signed with NASA as part of the Commercial Lunar Payload Services (CLPS) program. The CLPS program is Nasa’s attempt at driving private participation on future lunar missions. But the payloads help set stage for NASA’s Artemis program, which would mark their first attempt since the Apollo program, to land astronauts on the lunar surface.

Some of the payloads reflect the new engineering demands for such long-term lunar missions. To streamline tracking lander and rovers on the moon, NASA supplied the Lunar GNSS Receiver Experiment (LuGRE). It is a GNSS receiver to help earth-orbiting satellite constellations, including GPS and the Galileo, track the lunar lander with high accuracy in real-time. Another one is the Regolith Adherence Characterization (RAC) that investigates possible soil degradation left behind in the wake of a typical lunar mission soft-landing.

Other payloads were designed to explore various science objectives. Research institutes and universities across the United States contributed to a variety of instruments. They included laser retro reflectors to measure distances, an x-ray imaging device to study how the solar wind affects space weather on earth; a probe which can inject itself into the moon’s sub-surface to measure heat dissipation.

In a press release applauding Blue Ghost’s successful soft-landing attempt, NASA’s acting administrator, Janet Petro, said, “This incredible achievement demonstrates how Nasa and American companies are leading the way in space exploration for the benefit of all … We have already learned many lessons – and the technological and science demonstrations onboard Firefly’s Blue Ghost Mission 1 will improve our ability to not only discover more science, but to ensure the safety of our spacecraft instruments for future human exploration – both in the short term and long term.”

Continue Reading

EDUNEWS & VIEWS

Indian kids use different math skills at work vs. school

The research, which involved over 200 children, compared the performances of children engaged in market work with those focused solely on their studies

Published

on

Image by Rajesh Balouria from Pixabay

A recent study conducted in Delhi sheds light on the contrasting mathematical abilities of children who work in markets versus those who attend school, raising questions about how educational systems can better address these disparities. The research, which involved over 200 children, compared the performances of children engaged in market work with those focused solely on their studies.

In the study, children were tasked with solving math problems under various conditions. Remarkably, 85 percent of children with market jobs were able to answer a complex market transaction problem correctly, while only 10 percent of their school-going counterparts succeeded in solving a similar question. However, when the same group was given simple division and subtraction problems, with pencil and paper for assistance, the results shifted. Fifty-nine percent of school kids solved the problems correctly, while only 45 percent of market-working children did.

The researchers also introduced a word problem involving a boy buying vegetables at the market. One-third of market-working children successfully solved the problem without any aid, whereas fewer than 1 percent of schoolchildren were able to do the same. This stark difference in performance highlights the potential benefits that practical, real-world experience in the marketplace can offer.

Why, then, do nonworking students seem to struggle more under market conditions?

“They learned an algorithm but didn’t understand it,” said researcher Abhijit Banerjee, explaining the phenomenon. On the other hand, market-working children appeared to have developed useful strategies for managing transactions. One notable example was their use of rounding to simplify calculations. For instance, when faced with multiplying 43 by 11, many market kids would round 43 to 40, multiply by 10, and then add 43 to get the correct result of 473—an intuitive trick that seemed to help them tackle problems more efficiently.

“The market kids are able to exploit base 10, so they do better on base 10 problems,” said Esther Duflo, co-author of the study. “The school kids have no idea. It makes no difference to them.” Conversely, the schoolchildren demonstrated a better understanding of formal written methods for division and subtraction.

The findings raise an important issue: while market-working children excel in solving real-world problems quickly, they may be missing out on the formal education necessary for long-term academic success. “It would likely be better for the long-term futures if they also did well in school and wound up with a high school degree or better,” Banerjee said.

The divide between the intuitive problem-solving skills of market kids and the formal methods taught in school suggests that a new approach could be beneficial in the classroom. Banerjee suspects that traditional teaching methods, which often prioritize a single, formal approach to solving problems, may be limiting. He advocates for encouraging students to reason their way toward an approximation of the correct answer, a method that aligns more closely with the informal strategies used by market-working children.

Despite these concerns, Duflo emphasized, “We don’t want to blame the teachers. It’s not their fault. They are given a strict curriculum to follow, and strict methods to follow.”

The question remains: how can schools adjust their teaching methods to better support students’ diverse problem-solving strategies? The research team is actively exploring new experiments to address this issue, with the goal of creating a more inclusive and effective educational system.

“These findings highlight the importance of educational curricula that bridge the gap between intuitive and formal mathematics,” the authors concluded.

The study was supported by the Abdul Latif Jameel Poverty Action Lab’s Post-Primary Education Initiative, the Foundation Blaise Pascal, and the AXA Research Fund.

Continue Reading

Trending