The Sciences
Researchers develop AI algorithm to accurately detect heart murmurs in dogs
Researchers have developed AI Algorithm to detect heart murmurs in dogs, improving early diagnosis of cardiac disease
Researchers at the University of Cambridge have developed a machine learning algorithm capable of accurately detecting heart murmurs in dogs—a critical indicator of cardiac disease, particularly prevalent in smaller breeds like the King Charles Spaniel. This innovative approach has the potential to transform veterinary care, offering an accessible tool for early diagnosis and treatment of heart conditions.
Heart murmurs are a key sign of mitral valve disease, the most common heart issue affecting adult dogs. Statistically, approximately one in every 30 dogs seen by a veterinarian presents with a heart murmur, with higher rates observed in small breeds and older dogs. Given the frequency of such conditions, timely detection is essential. Early intervention can significantly enhance a dog’s quality of life and longevity, making effective screening methods vital for veterinarians.
Dr. Andrew McDonald, the study’s first author from the Department of Engineering at Cambridge, emphasized the importance of early detection, according to a statement issued by the University: “Heart disease in humans is a huge health issue, but in dogs it’s an even bigger problem. Most smaller dog breeds will have heart disease when they get older, but obviously dogs can’t communicate in the same way that humans can, so it’s up to primary care vets to detect heart disease early enough so it can be treated.”
The Algorithm’s Development
The research team began with an algorithm initially designed for human heart sound analysis. Recognizing the similarities between mammalian heart function, they adapted this technology to analyze audio recordings from digital stethoscopes used on dogs. The algorithm demonstrated an impressive sensitivity of 90% in detecting heart murmurs, a level of accuracy comparable to that of expert cardiologists.
Professor Anurag Agarwal, the lead researcher and an expert in acoustics and bioengineering, noted the absence of a dedicated database for canine heart sounds. “As far as we’re aware, there are no existing databases of heart sounds in dogs, which is why we started out with a database of heart sounds in humans,” he explained in a statement issued by the University of Cambridge. “Mammalian hearts are fairly similar, and when things go wrong, they tend to go wrong in similar ways.”
The team refined the algorithm to not only detect but also grade heart murmurs
To build a robust dataset, the researchers collected heart sound data from nearly 800 dogs undergoing routine examinations at four veterinary specialist centers across the UK. Each dog received a thorough physical examination and an echocardiogram performed by a cardiologist, who graded any detected murmurs and identified underlying cardiac issues. This effort resulted in the largest dataset of dog heart sounds ever compiled.
Expanding the Dataset for Better Outcomes
Co-author Professor Jose Novo Matos, a small animal cardiology specialist, highlighted the need for diverse data to improve the algorithm’s effectiveness: “Mitral valve disease mainly affects smaller dogs, but to test and improve our algorithm, we wanted to get data from dogs of all shapes, sizes, and ages. The more data we have to train it, the more useful our algorithm will be, both for vets and for dog owners.”
The team refined the algorithm to not only detect but also grade heart murmurs, distinguishing between mild and advanced disease requiring further intervention. This innovation aims to empower general veterinarians, reducing the need for expensive specialized scans and consultations with cardiologists.
Promising Results and Future Implications
The algorithm’s performance was encouraging: it aligned with cardiologists’ assessments in over half of the cases, and in 90% of instances, it was within one grading unit of the cardiologist’s evaluation. Dr. McDonald pointed out the practical implications of these findings: “The grade of heart murmur is a useful differentiator for determining next steps and treatments, and we’ve automated that process.”
Novo Matos remarked on the transformative potential of this technology, seeing it as a supportive tool rather than a job threat. “So many people talk about AI as a threat to jobs, but for me, I see it as a tool that will make me a better cardiologist,” he said. With the veterinary profession facing time constraints and a shortage of specialists, this algorithm could streamline the process of identifying dogs that need urgent care.
A Path Forward for Veterinary Medicine
The researchers’ ultimate goal is to equip veterinarians with the means to make informed decisions regarding treatment, enhancing the quality of life for their canine patients. “Knowing when to medicate is so important, in order to give dogs the best quality of life possible for as long as possible,” said Agarwal.
Supported by organisations such as the Kennel Club Charitable Trust and the Medical Research Council, this research marks a significant step forward in the use of machine learning for veterinary applications. As technology continues to evolve, it holds the promise of not only advancing animal health but also improving the human-animal bond through better care and understanding.
Society
Health Challenges Intensify Amid Climate Change, Zoonotic Diseases: WHO former Chief Scientist
Dr. Soumya Swaminathan explains that most emerging viral threats today are zoonotic infections, transmitted from animals to humans, which are becoming more frequent due to environmental factors exacerbated by climate change
Amid rising concerns over climate change and its impact on human health, Dr. Soumya Swaminathan, the former Chief Scientist of the World Health Organization (WHO), highlighted the pressing challenges facing global health, particularly the rise of zoonotic diseases, antimicrobial resistance, and the growing threat of climate change.
Dr. Swaminathan made these remarks at an event in Cochin, the bustling port city in the southern Indian state of Kerala, on January 25, 2025. The event marked the launch of several initiatives as part of a significant research project on water quality and waterborne diseases in Vembanad Lake at the ICAR-Central Marine Fisheries Research Institute (CMFRI). Dr. Swaminathan stressed the urgency of addressing these interconnected global health issues.
She explained that most emerging viral threats today are zoonotic infections, transmitted from animals to humans, which are becoming more frequent due to environmental factors exacerbated by climate change. “Most of the health threats today originate from environmental factors,” she said, calling for a stronger focus on integrated research. This includes collaboration across weather, climate, health, and environmental data to predict and prevent future outbreaks of infectious diseases.
Dr. Swaminathan also called for the establishment of an Environmental Health Regulatory Agency in India to better manage the risks posed by climate change and other environmental factors. “We need a more systematic and comprehensive approach to protecting public health,” she noted.
Dietary Risks and Non-Communicable Diseases
In addition to environmental concerns, Dr. Swaminathan raised alarms about the rising health risks linked to poor diets. “Half of Indians cannot afford a nutritionally sufficient healthy diet,” she revealed, highlighting the growing crisis of malnutrition, obesity, anaemia, and micronutrient deficiencies in the country. She particularly pointed to South Indian states Kerala and Tamil Nadu, where these health issues are escalating, despite the rising rates of obesity and non-communicable diseases.
Dr. Swaminathan also called for the establishment of an Environmental Health Regulatory Agency in India to better manage the risks posed by climate change and other environmental factors
Dr. Swaminathan emphasized the untapped potential of marine resources as a key solution to improving nutrition in India, urging for a greater focus on incorporating these resources into the national diet to combat these nutritional challenges.
Climate Change and Public Health
The devastating effects of climate change were another focal point of Dr. Swaminathan’s remarks. “India is one of the most vulnerable countries to climate change,” she warned. “Almost the entire population is exposed to climate hazards such as floods, droughts, cyclones, and extreme heat, which are detrimental to both physical and mental health.” She pointed out that the most vulnerable populations, including the poor, are hit hardest by these hazards and called for enhanced adaptation strategies and resilience-building measures to mitigate these impacts.
Collaboration and Citizen Science: A Path Forward
Dr. Swaminathan also underscored the importance of collaboration between government agencies, research institutions, and local communities in tackling these multifaceted health challenges. She highlighted the role of citizen science initiatives in empowering communities and gathering valuable data.
Reflecting on the success of the global scientific response to COVID-19, she praised the unprecedented collaboration and data-sharing that led to the rapid development of vaccines. “During my time at the WHO, I witnessed first-hand the extraordinary level of networking and data sharing,” Dr. Swaminathan said. “Scientists prioritized rapid dissemination of findings over individual publication, which paid off.”
However, she also warned about the dangers of misinformation, particularly in the digital age, where misleading health advice can easily spread on social media. “This was evident during the COVID-19 pandemic, when everyone considered themselves an ‘expert’ and offered advice to the public,” she said, stressing the need for clear, evidence-based communication.
Dr. Swaminathan also praised Kerala’s proactive approach to public health, particularly in effectively containing the Nipah virus, which serves as a model for other states in India.
Society
New Study Combines Modern Science and Ayurveda to Offer Hope for Alzheimer’s Treatment
The research explores a novel multipronged approach to Alzheimer’s treatment that combines modern scientific methods with ancient Ayurvedic medicine.
An intriguing study led by Professor Anirban Bhunia at the Bose Institute in Kolkata, India, offers new hope for those battling Alzheimer’s disease, dementia, and other neurodegenerative conditions. The research, published in two journals, explores a novel multipronged approach to treatment that combines modern scientific methods with ancient Ayurvedic medicine.
Amyloid proteins, particularly amyloid beta (Aβ), are known to play a significant role in the development of Alzheimer’s disease. These proteins accumulate in the brain, forming toxic plaques that disrupt normal brain function. Professor Bhunia and his team have been investigating strategies to prevent the aggregation of amyloid beta proteins, a key factor in the progression of Alzheimer’s and other neurodegenerative diseases.
In their latest study, the researchers employed two distinct strategies. The first involved the use of chemically synthesized small molecules, specifically designed peptides, which have shown promise in inhibiting amyloid aggregation. The second strategy repurposed an ancient Ayurvedic formulation, Lasunadya Ghrita (LG), which has long been used in traditional Indian medicine to treat depression and related mental health disorders.
This study highlights a novel role for Ayurvedic compounds in combating amyloid-related diseases
“We have demonstrated that the water extract of Lasunadya Ghrita (LGWE) is particularly effective in breaking down amyloid beta aggregates,” said Professor Bhunia. “Remarkably, these compounds were more effective than chemically designed peptides in reducing the toxicity of amyloid aggregates, breaking them down into smaller, non-toxic molecules.”
The team’s research revealed that LGWE not only disrupted the elongation of amyloid fibrils but also inhibited the formation of toxic oligomers in the early stages of aggregation. This study highlights a novel role for Ayurvedic compounds in combating amyloid-related diseases.
In their findings, which were published in Biochemistry (ACS) and Biophysical Chemistry (Elsevier), Professor Bhunia and his collaborators from the Saha Institute of Nuclear Physics (SINP) Kolkata and IIT-Guwahati confirmed that both the synthetic peptides and the natural compounds derived from Ayurveda were non-toxic and stable in serum. These compounds proved effective in inhibiting amyloid protein aggregation, offering new avenues for treatment.
Further collaboration with Ayurveda expert Professor Dr. Sanjeev Rastogi from Lucknow University in India’s Uttar Pradesh state emphasized the potential of integrating natural remedies into modern therapeutic strategies for neurodegenerative diseases. Their combined research sheds light on how Ayurvedic compounds can not only inhibit amyloid beta aggregation but also enhance the breakdown of these proteins more effectively than synthetic peptides.
“This study brings new hope for Alzheimer’s patients and demonstrates that ancient Ayurvedic medicine may have a modern-day role in treating complex diseases like dementia,” said Dr. Rastogi. “The potential of these natural compounds to address amyloid aggregation could revolutionize the way we approach treatment for these debilitating conditions.”
This innovative research underscores the importance of exploring both modern science and traditional medicine in the search for effective treatments for Alzheimer’s disease and related neurodegenerative disorders. It paves the way for further exploration of natural compounds and could significantly improve the quality of life for those suffering from dementia in the future.
Space & Physics
IIT Kanpur Unveils World’s First BCI-Based Robotic Hand Exoskeleton for Stroke Rehabilitation
The BCI-based robotic hand exoskeleton utilizes a unique closed-loop control system to actively engage the patient’s brain during therapy
The Indian Institute of Technology Kanpur (IITK) has unveiled the world’s first Brain-Computer Interface (BCI)-based Robotic Hand Exoskeleton, a groundbreaking innovation set to revolutionize stroke rehabilitation. This technology promises to accelerate recovery and improve patient outcomes by redefining post-stroke therapy. Developed over 15 years of rigorous research led by Prof. Ashish Dutta from IIT Kanpur’s Department of Mechanical Engineering, the project was supported by India’s Department of Science and Technology (DST), UK India Education and Research Initiative (UKIERI), and the Indian Council of Medical Research (ICMR).
The BCI-based robotic hand exoskeleton utilizes a unique closed-loop control system to actively engage the patient’s brain during therapy. It integrates three key components: a Brain-Computer Interface that captures EEG signals from the motor cortex to detect the patient’s intent to move, a robotic hand exoskeleton that assists with therapeutic hand movements, and software that synchronizes brain signals with the exoskeleton for real-time feedback. This coordination helps foster continuous brain engagement, leading to faster and more effective recovery.
“Stroke recovery is a long and often uncertain process. Our device bridges the gap between physical therapy, brain engagement, and visual feedback creating a closed-loop control system that activates brain plasticity, which is the brain’s ability to change its structure and function in response to stimuli,” said Prof. Ashish Dutta. “This is especially significant for patients whose recovery has plateaued, as it offers renewed hope for further improvement and regaining mobility. With promising results in both India and the UK, we are optimistic that this device will make a significant impact in the field of neurorehabilitation.”
Traditional stroke recovery often faces challenges, especially when motor impairments stem from damage to the motor cortex. Conventional physiotherapy methods may fall short due to limited brain involvement. The new device addresses this gap by linking brain activity with physical movement. During therapy, patients are guided on-screen to perform hand movements, such as opening or closing their fist, while EEG signals from the brain and EMG signals from the muscles are used to activate the robotic exoskeleton in an assist-as-required mode. This synchronization ensures the brain, muscles, and visual engagement work together, improving recovery outcomes.
Pilot clinical trials, conducted in collaboration with Regency Hospital in India and the University of Ulster in the UK, have yielded impressive results. Remarkably, eight patients—four in India and four in the UK—who had reached a recovery plateau one or two years post-stroke achieved full recovery through the BCI-based robotic therapy. The device’s active engagement of the brain during therapy has proven to lead to faster and more comprehensive recovery compared to traditional physiotherapy.
While stroke recovery is typically most effective within the first six to twelve months, this innovative device has demonstrated its ability to facilitate recovery even beyond this critical period. With large-scale clinical trials underway at Apollo Hospitals in India, the device is expected to be commercially available within three to five years, offering new hope for stroke patients worldwide.
-
Space & Physics5 months ago
Bubbles observed moving on a star for the first time
-
Learning & Teaching5 months ago
India’s Premier Universities Ranked: Indian Institute of Science tops the list
-
Earth6 months ago
NASA discovers innovative method for measuring river flows
-
Interviews3 months ago
Memory Formation Unveiled: An Interview with Sajikumar Sreedharan
-
Learning & Teaching6 months ago
IIT Madras retains title as India’s top higher education institute
-
EDUNEWS & VIEWS3 months ago
India: Big Science in the 20th century and beyond
-
Society5 months ago
Repurposed antidepressant shows promise as cost-effective treatment for breast cancer
-
The Sciences5 months ago
Researchers using mushrooms to clean contaminated water