Society
SpaceX prepares for the Great Filter – but why?
What’s Elon Musk’s gameplan to get humans to thrive in the universe all about?

Two weeks ago, Ed Publica did a news story on Elon Musk’s tweet.
It sure was a headline topic in itself.
“We are mapping out a game plan to get a million people to Mars,” posted Musk. “Civilization only passes the single-planet Great Filter when Mars can survive even if Earth supply ships stop coming.”
Press releases that came in the wake of the tweet, never did engage with Musk’s invocation of – the Great Filter.
The Great Filter is what the astronomer Seth Shostak stated, a ‘variant on the Fermi paradox’.
The Fermi paradox was borne out of an idea proposed by the enigmatic 20th century theoretical physicist, Enrico Fermi, who posed a profound, philosophical question.
If an intelligent civilization were capable of space travel, and extraterrestrial life existed, then where are they?
In fact, the question itself was a paradoxical idea. Either of course, aliens don’t exist – or if they do, then they’re hiding in plain sight, not wanting to be contacted. Perhaps in the latter case, aliens want to avoid being colonized or wiped extinct by a civilization with superior technology. No one knows what the answer is. We don’t know yet if it even is a paradox with an answer.
But the Great Filter theory, proposed by an economist, Robin Hanson in 1998 makes an interesting argument that offers a possible resolution against the Fermi paradox. Maybe life is uncommon, or can easily go extinct. There can be some factors at play to stop a civilization from thriving and spawn a population to safeguard it.
Maybe humanity’s destined to live, and then die on earth – only to live on Mars, until every resource exhausts and human genes are ferried to distant exoplanets to hopefully spawn and recreate humanity there. Or perhaps humanity’s alone amongst the trillions of stars in the universe, because someone has to make the first step to show how difficult it is for life to thrive.

Credit: Greg Rakozy / Unsplash
How feasible is this?
Musk’s prophetic vision is more his vision for humanity – reminiscent in science fiction novels and films.
There’s a line from the movie Interstellar (2014), when Michael Caine, playing an astrophysicist, says, ‘We’re not meant to save the world, we’re meant to leave it.’ In the movie, earth gets plagued by crop blight, and people starve to death when food resources are hard to sustain. Although the problem was foreseeable, we were too late to act on it. And that was the main driver of the plot. Astronauts were dispatched into a wormhole and tunnel through into a different galaxy light years away. Humanity was doomed, and so the astronauts prepared human embryos to take our place and be the Adam and Eves of their species.
The Great Filter and the Fermi paradox are at best a useful thinking exercise about the myriad ways human imagination really works.
Musk’s idea to colonize Mars makes some sense in that it’s about taking a small step to demonstrate we can demonstrate a necessary first step of survival.
But then space is cruel and indifferent. The Martian atmosphere is completely thin, with almost zero atmospheric pressure. It’s not even about the carbon dioxide in what’s left in that atmosphere – there’s just barely any atmosphere there. Musk probably is aware of this, given he has a physics background!
For instance, how do we pressurize a whole planet? The optimism is that technology can circumvent these problems.
This technology, possibly in a few decades, can seem like ‘magic’ to us. The Great Filter and the Fermi paradox are at best a useful thinking exercise about the myriad ways human imagination really works.
And until we demonstrate basic physics that works in its favor, aren’t these just wishful fantasies?
For instance, how can SpaceX ‘gameplan’ Mars’ colonization, if the company doesn’t itself survive the Great Filter test? Who else in the world is taking this seriously apart from Elon Musk?
‘Colonizing’ space
Musk’s gameplan invites more questions, since there’s barely any discussion that he leads on it.
Musk is polarizing to his critics, who question the need for expensive space exploration programs that have no direct benefit on our economy.
Musk’s usage of the term ‘colonization’ can be seen to resonate with the sentiment in the 15th century when the West discovered the rest of the world through the sea-route. However, it didn’t fare well for the rest of the world. One notable example is when Christopher Columbus, ‘discovered’ North America, when he was in search of India – he and his men began the subjugation of Native Americans.

An 1850 painting depicting Christopher Columbus (center) surrounded by people, before embarking a ship in August 1492. Credit: Wellcome Trust
Meanwhile, the Portuguese voyager Vasco da Gama arrived at the shores of India, in Kozhikode. That opened up routes for vessels of the East India Company from across Europe to trade – and then colonize Indians.
I’m not suggesting Musk has nefarious plans at play. However, what’s the chance that future government policies somehow get blindsided, or ignorant of advice from experts outside science on the political implications of space exploration?
And what better ‘gameplan’ can there really be if it starts with experts from a diversity of fields huddling together for an enlightening discussion?
Society
Is India’s Clean Cooking Gas Model the Future for the Global South?
The Indian model, backed by smart subsidies and sustainable policies, provides a scalable solution for developing nations striving for clean cooking access

At the just concluded India Energy Week 2025 (February 11-14), India’s Union Minister of Petroleum and Natural Gas, Hardeep Singh Puri, chaired a Ministerial Roundtable on Clean Cooking, where India’s success in providing universal access to clean cooking gas became a key focal point. The Minister emphasized that India’s model for clean cooking gas is not only a success story but also a replicable blueprint for the Global South, offering solutions to nations facing similar energy access challenges.
“India’s clean cooking gas revolution is a game-changer,” said Puri. He pointed out the key factors behind this success: targeted subsidies, strong political will, the digitization of distribution networks by Oil Marketing Companies (OMCs), and nationwide campaigns to shift cultural practices towards clean cooking.
The session brought together representatives from Brazil, Tanzania, Malawi, Sudan, Nepal, and key industry leaders, including the International Energy Agency (IEA), Total Energy, and Boston Consulting Group (BCG). These nations, all striving to enhance energy access for their populations, were eager to learn from India’s achievements.
Under India’s popular government scheme Pradhan Mantri Ujjwala Yojana (PMUY– Prime Minister’s Lightening Scheme), beneficiaries receive LPG access at a highly affordable cost of just 7 cents per day, while other consumers can access clean cooking fuel at 15 cents per day. “This affordability has been a game-changer in driving widespread adoption,” added Shri Puri, underlining the pivotal role of subsidies in overcoming financial barriers to clean cooking.
International representatives shared their nations’ efforts to transition to clean cooking solutions. Dkt. Doto Mashaka Biteko, Deputy Prime Minister and Minister of Energy of Tanzania, outlined the country’s strategy to transition 80% of households to clean cooking by 2030, relying on subsidies and a mix of energy sources, including LPG, natural gas, and biogas. Despite this ambition, he noted challenges such as financing constraints, infrastructure costs, and the need for regulatory reforms to encourage private-sector participation.
Similarly, Dr. Mohieldien Naiem Mohamed Saied, Minister of Energy and Oil, Sudan, emphasized the need for private-sector involvement to overcome gaps in LPG supply, particularly as Sudan still imports much of its energy. He stressed the importance of encouraging local cylinder production and ensuring cost-effective imports to drive broader adoption.
Mary Burce Warlick, Deputy Executive Director of the IEA, recognized India’s success as a model that offers valuable lessons for other nations grappling with issues of affordability, access, and infrastructure. She emphasized the role of concessional financing and public-private partnerships (PPP) in scaling up clean cooking access. Addressing cultural acceptance and regulatory adjustments, such as tax reductions, were also highlighted as critical factors for large-scale adoption.
Rahool Panandiker, Partner at Boston Consulting Group (BCG), further underscored the effectiveness of India’s clean cooking transformation. He attributed the success to the strong political commitment, effective subsidy targeting, and robust public awareness campaigns. Panandiker also credited India’s Oil Marketing Companies (OMCs) for enabling last-mile LPG delivery through digital platforms, making adoption seamless. He also stressed the importance of refining the cylinder refill model to ensure sustained usage while balancing affordability with economic sustainability.
In addition to LPG, the roundtable explored the potential of alternative clean cooking technologies. Puri addressed the potential of solar cookers in expanding clean cooking solutions across the Global South. He highlighted that IOCL’s advanced solar cookers, priced at approximately $500 per unit, could be a viable solution, though the price point remains a challenge for widespread adoption. “Leveraging carbon financing and collaborating with the private sector can drive costs down and make solar cooking a viable alternative for millions,” he stated.
This initiative aligns with India’s broader efforts to diversify clean cooking options beyond LPG, further reinforcing its commitment to reducing reliance on traditional biomass fuels and cutting carbon emissions. The government’s focus on solar cooking options aims to ensure a more sustainable future for energy access, particularly in remote and underserved areas.
“The Indian model, backed by smart subsidies and sustainable policies, provides a scalable solution for developing nations striving for clean cooking access,” Puri said. He also stressed that achieving universal clean cooking access is not merely an economic imperative but a moral one, given the severe health and environmental impacts of traditional biomass cooking.
Green Energy
India Strengthens Clean Energy Initiatives at India Energy Week 2025
These clean energy projects are part of India’s broader strategy to diversify its energy sources and strengthen its energy security while promoting sustainability

At the India Energy Week 2025, India underscored its commitment to a sustainable and clean energy future through several strategic partnerships and agreements. Minister of Petroleum and Natural Gas, Hardeep Singh Puri, highlighted the importance of these initiatives in driving India’s transition to a greener energy landscape.
A key development in the clean energy sector was the partnership between India’s public sector firm BPCL and Eco Wave Power of Israel, which aims to establish India’s first wave energy pilot project in Mumbai. The project will utilize wave energy converter technology, marking a significant step in the country’s exploration of renewable energy sources.
In the biofuel sector, BPCL also signed an MoU with the National Sugar Institute, Kanpur, to scale up the production of sweet sorghum-based bioethanol. This collaboration will help build capacity for both farmers and industry partners, supporting India’s drive to increase the share of biofuels in its energy mix.
These clean energy projects are part of India’s broader strategy to diversify its energy sources and strengthen its energy security while promoting sustainability. Through these initiatives, India is reinforcing its position as a key player in the global clean energy transition.
Minister Puri emphasized that these agreements are a testament to India’s commitment to securing affordable, sustainable energy and fostering international collaborations in cutting-edge energy solutions. These partnerships will help achieve India’s energy transition goals, ensuring a resilient and sustainable energy future for the nation.
Society
Sustainable Farming: The Microgreens Model from Kerala, South India
Microgreens can be harvested in 10 to 15 days from sowing, and they are not affected by external factors like rainfall, floods, or drought.

In the verdant expanses of South Chittoor, a locality near Ernakulam city in Kerala, a coastal state in the southwestern part of India, lives Ajay Gopinath, a pioneer in the field of urban farming. In a region where traditional farming is deeply rooted but not always feasible, Ajay has embraced a more innovative approach, cultivating crops in a controlled indoor environment. His journey into microgreen farming is not just about a unique method of growing food, but a mission to bring sustainable, nutritious farming into urban spaces.
With a small, yet efficient setup of food-grade trays and advanced farming techniques, Ajay has created an urban farm within his own home. This modern method allows him to grow a variety of microgreens without the need for large tracts of land or the strenuous labour typically associated with farming. His work is a testament to how technology and tradition can combine, offering a glimpse into the future of agriculture in cities. Ajay showcases his micro-farming setup in a 600-square-foot space, where he grows a variety of crops using food-grade trays in a micro-farming system.

Microgreens and Their Benefits
Microgreens, such as sprouts and small plants grown from seeds, are harvested when they reach about two inches in height. This method of growing plants is known as “microgreen farming” and does not require extensive land or hard physical labour. “Microgreens can be harvested in 10 to 15 days from sowing, and they are not affected by external factors like rainfall, floods, or drought. Plants like sunflower, mustard, spinach, chickpea, and others can be grown in this way,” says Ajay Gopinath.
The key advantage of microgreens is their dense nutritional value. For instance, just 25 grams of microgreens can provide the same nutritional benefits as consuming a kilogram of cabbage or lentils. Microgreens are essentially at the next growth stage after sprouts, when they develop their first true leaves alongside the cotyledons.
Ajay Gopinath’s Urban Microgreen Farm
Ajay operates his indoor microgreen farm behind the Chittoor temple in Ernakulam, where he grows around 15 varieties of microgreens, including mustard, chia seeds, cabbage, and others. With daily harvests, his small farming space consistently yields reliable income. Through his venture Grow Greens, Ajay has proven that large-scale land is unnecessary for microgreen farming, making it possible to grow these nutritious plants in a small indoor space.
How to Farm Microgreens Indoors?
Microgreens are grown in trays arranged on racks, where each tray contains a different variety of plant. This indoor farm follows modern agricultural techniques using artificial lighting, fans, and purified water to create a controlled environment. In the initial stages, the seeds are placed in shallow trays with a layer of moist cloth. After two days, once the seeds begin to sprout, the trays are moved to the “grow room” that maintains the ideal temperature and humidity for plant growth. Within 7 to 10 days, the microgreens reach a height of 24 inches, and they are ready to be harvested.
Microgreens are grown in trays arranged on racks, where each tray contains a different variety of plant
Ajay emphasizes that proper microgreen farming should be scientifically conducted, and the use of materials like printed paper or plastic is not ideal for healthy production. He stresses the importance of using seeds that are free from pesticides and other chemicals, and the seeds must be non-GMO, produced under natural conditions. Seeds for this purpose are sourced from cities like Bangalore, Pune, and Hyderabad.
The Nutritional Benefits of Microgreens
Microgreens contain up to 40 times the nutrient density of mature plants. While many people are familiar with basic salad ingredients like onions, tomatoes, and cucumbers, microgreens offer a much more potent alternative. They are now favoured by health-conscious individuals, those on specialized diets, and patients undergoing treatment. Ajay’s microgreens are sold in star hotels and supermarkets in Ernakulam, and he offers sample packs for those new to this type of nutrition.
Market Demand and Expansion
While microgreens are priced at 1500-2000 INR per kilogram in the market, Ajay’s aim is to make them widely accessible. He believes that microgreen farming should expand to the grassroots level, making it available in local panchayats as a sustainable and nutritious food option. By making daily deliveries of freshly harvested microgreens, Ajay is building awareness about this high-tech farming method, showing that it requires minimal land and effort while offering a steady income.
Setting Up a Microgreen Farm
To begin, food-grade trays are used for farming. These trays are arranged on racks, with each tray dedicated to a specific plant. A controlled environment, complete with artificial light, fans, and purified water, ensures optimal conditions for growth. Special containers are used to prepare the seeds, and after the first two days, when they begin to sprout, they are moved to the grow room. By maintaining low humidity and a consistent temperature, the plants can grow and be harvested in just 7-10 days.
Ajay suggests that anyone, even those living in apartments with limited space, can grow microgreens at home. He recommends using local seeds, such as rice, millet, fenugreek, or mustard, and ensuring the growing space has good airflow and sunlight.
The EP View
Microgreen farming, as demonstrated by Ajay Gopinath and his Grow Greens venture, is a promising solution for urban farming. It proves that with minimal space and effort, anyone can grow highly nutritious crops indoors, offering both health benefits and a sustainable income source. Through his work, Ajay is helping to popularize microgreen farming, aiming to make it accessible to all.
-
Space & Physics5 months ago
Bubbles observed moving on a star for the first time
-
Interviews4 months ago
Memory Formation Unveiled: An Interview with Sajikumar Sreedharan
-
EDUNEWS & VIEWS3 months ago
India: Big Science in the 20th century and beyond
-
Space & Physics4 months ago
Nobel laureates in Physics recognized for contributions to Machine Learning
-
Society6 months ago
Repurposed antidepressant shows promise as cost-effective treatment for breast cancer
-
The Sciences5 months ago
Researchers using mushrooms to clean contaminated water
-
The Sciences5 months ago
UFS researcher tackles plastic pollution with innovative biodegradable polymers
-
Society4 months ago
Global tech alliance: Nvidia partners with Reliance to transform AI landscape in India