Society
SpaceX prepares for the Great Filter – but why?
What’s Elon Musk’s gameplan to get humans to thrive in the universe all about?

Two weeks ago, Ed Publica did a news story on Elon Musk’s tweet. It sure was a headline topic in itself. “We are mapping out a game plan to get a million people to Mars,” posted Musk. “Civilization only passes the single-planet Great Filter when Mars can survive even if Earth supply ships stop coming.”
Press releases that came in the wake of the tweet, never did engage with Musk’s invocation of – the Great Filter – which as the astronomer Seth Shostak once stated, a ‘variant on the Fermi paradox’.
The Fermi paradox was borne out of an idea proposed by the enigmatic 20th century theoretical physicist, Enrico Fermi, who posed a profound, philosophical question: If an intelligent civilization were capable of space travel, and extraterrestrial life existed, then where are they?
The question itself was a paradoxical idea. Either of course, aliens don’t exist – or if they do, then they’re hiding in plain sight, not wanting to be contacted. Perhaps in the latter case, aliens want to avoid being colonized or wiped extinct by a civilization with superior technology. No one knows what the answer is. We don’t know yet if it even is a paradox with an answer.
But the Great Filter theory, proposed by an economist, Robin Hanson in 1998 makes an interesting argument that offers a possible resolution against the Fermi paradox. Maybe life is uncommon, or can easily go extinct. There can be some factors at play to stop a civilization from thriving and spawn a population to safeguard it.
Maybe humanity’s destined to live, and then die on earth – only to live on Mars, until every resource exhausts and human genes are ferried to distant exoplanets to hopefully spawn and recreate humanity there. Or perhaps humanity’s alone amongst the trillions of stars in the universe, because someone has to make the first step to show how difficult it is for life to thrive.

Credit: Greg Rakozy / Unsplash
How feasible is this?
Musk’s prophetic vision is more his vision for humanity – reminiscent in science fiction novels and films.
There’s a line from the movie Interstellar (2014), when Michael Caine, playing an astrophysicist, says, ‘We’re not meant to save the world, we’re meant to leave it.’ In the movie, earth gets plagued by crop blight, and people starve to death when food resources are hard to sustain. Although the problem was foreseeable, we were too late to act on it. And that was the main driver of the plot. Astronauts were dispatched into a wormhole and tunnel through into a different galaxy light years away. Humanity was doomed, and so the astronauts prepared human embryos to take our place and be the Adam and Eves of their species.
The Great Filter and the Fermi paradox are at best a useful thinking exercise about the myriad ways human imagination really works.
Musk’s idea to colonize Mars makes some sense in that it’s about taking a small step to demonstrate we can demonstrate a necessary first step of survival.
But then space is cruel and indifferent. The Martian atmosphere is completely thin, with almost zero atmospheric pressure. It’s not even about the carbon dioxide in what’s left in that atmosphere – there’s just barely any atmosphere there. Musk probably is aware of this, given he has a physics background!
For instance, how do we pressurize a whole planet? The optimism is that technology can circumvent these problems.
This technology, possibly in a few decades, can seem like ‘magic’ to us. The Great Filter and the Fermi paradox are at best a useful thinking exercise about the myriad ways human imagination really works.
And until we demonstrate basic physics that works in its favor, aren’t these just wishful fantasies?
For instance, how can SpaceX ‘gameplan’ Mars’ colonization, if the company doesn’t itself survive the Great Filter test? Who else in the world is taking this seriously apart from Elon Musk?
‘Colonizing’ space
Musk’s gameplan invites more questions, since there’s barely any discussion that he leads on it.
Musk is polarizing to his critics, who question the need for expensive space exploration programs that have no direct benefit on our economy.
Musk’s usage of the term ‘colonization’ can be seen to resonate with the sentiment in the 15th century when the West discovered the rest of the world through the sea-route. However, it didn’t fare well for the rest of the world. One notable example is when Christopher Columbus, ‘discovered’ North America, when he was in search of India – he and his men began the subjugation of Native Americans.

An 1850 painting depicting Christopher Columbus (center) surrounded by people, before embarking a ship in August 1492. Credit: Wellcome Trust
Meanwhile, the Portuguese voyager Vasco da Gama arrived at the shores of India, in Kozhikode. That opened up routes for vessels of the East India Company from across Europe to trade – and then colonize Indians.
I’m not suggesting Musk has nefarious plans at play. However, what’s the chance that future government policies somehow get blindsided, or ignorant of advice from experts outside science on the political implications of space exploration?
And what better ‘gameplan’ can there really be if it starts with experts from a diversity of fields huddling together for an enlightening discussion?
Society
How Scientists and Investigators Decode Air Crashes — The Black Box and Beyond
The final report may take months, but it will be critical in issuing safety directives or revising standard procedures.

As rescue and recovery operations continue following the June 12, 2025, plane crash in Ahmedabad, aviation safety experts are now focusing on the technical investigation phase. With 241 lives lost, the search for the cause isn’t just about accountability—it’s about prevention.
The Black Box: Aviation’s Memory Keeper
1. What Is the Black Box?
Despite the name, the black box is actually orange — for visibility. It consists of two components:
- Cockpit Voice Recorder (CVR): Captures conversations and audio from the flight deck.
- Flight Data Recorder (FDR): Logs dozens to hundreds of parameters — speed, altitude, engine status, control inputs.
These devices are housed in titanium or steel and can withstand:
- Temperatures above 1,000°C
- Underwater pressures up to 20,000 feet
- Crashes with up to 3,600 G-force
They also emit underwater locator beacons for up to 30 days.
2. Forensic Engineering & Flight Reconstruction
Beyond black boxes, investigators use:
- Radar data and air traffic control logs
- Wreckage analysis for structural failure clues
- Satellite-based tracking systems like ADS-B
- Weather data for turbulence or wind shear insights
Forensic teams often reconstruct the flight path virtually or even physically using recovered debris to determine failure points.
3. Human Factors & AI in Modern Investigation
New tools like machine learning and human factors analysis are used to identify procedural errors or lapses in judgement.
In many modern investigations, AI helps:
- Filter large datasets (e.g., over 1,000 flight parameters per second)
- Detect patterns missed by the human eye
- Predict similar risk scenarios in future flights
What Happens Next in the Ahmedabad Crash?
Authorities, in coordination with the Directorate General of Civil Aviation (DGCA), are likely:
- Retrieving and analyzing the black box
- Interviewing air traffic controllers
- Reconstructing the aircraft’s final seconds using both data and simulation
The final report may take months, but it will be critical in issuing safety directives or revising standard procedures.
Society
Researchers Unveil Light-Speed AI Chip to Power Next-Gen Wireless and Edge Devices
This could transform the future of wireless communication and edge computing

In a breakthrough that could transform the future of wireless communication and edge computing, engineers at MIT have developed a novel AI hardware accelerator capable of processing wireless signals at the speed of light. The new optical chip, built for signal classification, achieves nanosecond-level performance—up to 100 times faster than conventional digital processors—while consuming dramatically less energy.
With wireless spectrum under growing strain from billions of connected devices, from teleworking laptops to smart sensors, managing bandwidth has become a critical challenge. Artificial intelligence offers a path forward, but most existing AI models are too slow and power-hungry to operate in real time on wireless devices.
The MIT solution, known as MAFT-ONN (Multiplicative Analog Frequency Transform Optical Neural Network), could be a game-changer.
“There are many applications that would be enabled by edge devices that are capable of analyzing wireless signals,” said Prof. Dirk Englund, senior author of the study, in a media statement. “What we’ve presented in our paper could open up many possibilities for real-time and reliable AI inference. This work is the beginning of something that could be quite impactful.”
Published in Science Advances, the research describes how MAFT-ONN classifies signals in just 120 nanoseconds, using a compact optical chip that performs deep-learning tasks using light rather than electricity. Unlike traditional systems that convert signals to images before processing, the MIT design processes raw wireless data directly in the frequency domain—eliminating delays and reducing energy usage.
“We can fit 10,000 neurons onto a single device and compute the necessary multiplications in a single shot,” said Ronald Davis III, lead author and recent MIT PhD graduate.
The device achieved over 85% accuracy in a single shot, and with multiple measurements, it converges to above 99% accuracy, making it both fast and reliable.
Beyond wireless communications, the technology holds promise for edge AI in autonomous vehicles, smart medical devices, and future 6G networks, where real-time response is critical. By embedding ultra-fast AI directly into devices, this innovation could help cars react to hazards instantly or allow pacemakers to adapt to a patient’s heart rhythm in real-time.
Future work will focus on scaling the chip with multiplexing schemes and expanding its ability to handle more complex AI tasks, including transformer models and large language models (LLMs).
Society
Ahmedabad Plane Crash: The Science Behind Aircraft Take-Off -Understanding the Physics of Flight
Take-off is one of the most critical phases of flight, relying on the precise orchestration of aerodynamics, propulsion, and control systems. Here’s how it works:

On June 12, 2025, a tragic aviation accident struck Ahmedabad, India when a regional passenger aircraft, Air India flight A1-171, crashed during take-off at Sardar Vallabhbhai Patel International Airport. According to preliminary reports, the incident resulted in over 200 confirmed casualties, including both passengers and crew members, and several others are critically injured. The aviation community and scientific world now turn their eyes not just toward the cause but also toward understanding the complex science behind what should have been a routine take-off.
How Do Aircraft Take Off?
Take-off is one of the most critical phases of flight, relying on the precise orchestration of aerodynamics, propulsion, and control systems. Here’s how it works:
1. Lift and Thrust
To leave the ground, an aircraft must generate lift, a force that counters gravity. This is achieved through the unique shape of the wing, called an airfoil, which creates a pressure difference — higher pressure under the wing and lower pressure above — according to Bernoulli’s Principle and Newton’s Third Law.
Simultaneously, engines provide thrust, propelling the aircraft forward. Most commercial jets use turbofan engines, which accelerate air through turbines to generate power.
2. Critical Speeds
Before takeoff, pilots calculate critical speeds:
- V1 (Decision Speed): The last moment a takeoff can be safely aborted.
- Vr (Rotation Speed): The speed at which the pilot begins to lift the nose.
- V2 (Takeoff Safety Speed): The speed needed to climb safely even if one engine fails.
If anything disrupts this process — like bird strikes, engine failure, or runway obstructions — the results can be catastrophic.

Environmental and Mechanical Challenges
Factors like wind shear, runway surface condition, mechanical integrity, or pilot error can interfere with safe take-off. Investigators will be analyzing these very aspects in the Ahmedabad case.
The Bigger Picture
Take-off accounts for a small fraction of total flight time but is disproportionately associated with accidents — approximately 14% of all aviation accidents occur during take-off or initial climb.
-
Earth4 months ago
How IIT Kanpur is Paving the Way for a Solar-Powered Future in India’s Energy Transition
-
Space & Physics2 months ago
Could dark energy be a trick played by time?
-
Society3 months ago
Starliner crew challenge rhetoric, says they were never “stranded”
-
Space & Physics2 months ago
Sunita Williams aged less in space due to time dilation
-
Society5 months ago
DeepSeek: The Good, The Bad, and The Ugly
-
Space & Physics5 months ago
Obituary: R. Chidambaram, Eminent Physicist and Architect of India’s Nuclear Program
-
Earth2 months ago
122 Forests, 3.2 Million Trees: How One Man Built the World’s Largest Miyawaki Forest
-
Society4 months ago
Sustainable Farming: The Microgreens Model from Kerala, South India