Connect with us

Earth

A Green Future in the Making: India’s Renewable Energy Surge

With wind, solar, hydro, and bioenergy resources contributing to this capacity, India is moving steadily toward its goal of energy independence and environmental sustainability

Dipin Damodharan

Published

on

Image credit: Jose Roberto Jr. Del Rosario from Pixabay

The coastal winds of Tamil Nadu swept across the lush green fields, carrying with them the promise of a cleaner, more sustainable future. As the sun dipped below the horizon, the turbines that dotted the landscape turned steadily in the breeze, their blades slicing through the air like symbols of progress. In this southern state, a renewable energy revolution was taking root—one that would power not only the homes of millions but potentially reshape the future of global energy.

This transformation is not just a story of Tamil Nadu; it is the story of India, a nation rapidly advancing toward its renewable energy goals, with states like Rajasthan, Gujarat, Tamil Nadu and Karnataka playing a pivotal role in that progress. In October 2024, India’s renewable energy capacity soared past the 200-gigawatt (GW) mark, solidifying the country’s position as a global leader in clean energy. This milestone marks a critical point in India’s journey, as it works toward its ambitious target of 500 GW of renewable energy capacity from non-fossil sources by 2030.

As of 2024, Tamil Nadu boasts a renewable energy capacity of 23.7 GW, much of it derived from its wind farms. These wind corridors, stretching across the coastal plains, are among the most productive in the world. The state is also a major player in solar energy, leveraging its abundant sunlight to complement its wind resources and create a well-rounded renewable energy mix.

Tamil Nadu’s approach to renewable energy reflects a larger national trend. India, with its vast land, diverse climates, and abundant natural resources, is uniquely positioned to lead the global renewable energy revolution. The country’s total renewable energy capacity has surged by 24.2 GW in just a year, reaching 203.18 GW by October 2024. With wind, solar, hydro, and bioenergy resources contributing to this capacity, India is moving steadily toward its goal of energy independence and environmental sustainability.

Harnessing the Winds of Change

From sprawling solar farms in Rajasthan to the wind farms off Tamil Nadu’s coast, India has carefully cultivated a diverse renewable energy portfolio. The surge in renewable capacity includes an impressive 92.12 GW of solar power, 47.72 GW of wind energy, and 46.93 GW of hydroelectric power. With the addition of bioenergy resources, including biomass and biogas, which contribute 11.32 GW, India’s renewable energy landscape is not just growing—it’s evolving into a robust, multifaceted powerhouse.

The International Renewable Energy Agency (IRENA) reported that India accounted for a substantial portion of the 16.2 million jobs in the global renewable energy workforce.

This progress is not just about reducing India’s reliance on fossil fuels—it’s about securing the country’s energy future. In 2024, non-fossil sources, including nuclear power, now account for nearly half of the total installed electricity generation capacity, a figure that marks an essential step in India’s journey toward energy security and global environmental leadership.

The Winds of Change: How Renewable Energy is Powering Job Creation

But India’s renewable energy revolution isn’t just about the environment—it’s also driving economic growth. In 2023, the sector created over 1 million jobs, with hydropower and solar power leading the way in employment opportunities. The International Renewable Energy Agency (IRENA) reported that India accounted for a substantial portion of the 16.2 million jobs in the global renewable energy workforce. In particular, hydropower alone provided over 450,000 jobs, while solar energy employed approximately 318,600 people, a number that continues to grow.

As India’s renewable energy sector expands, so too does the potential for more green jobs. From construction and installation to operations and maintenance, the job opportunities created in this sector are helping to power not just the economy, but the livelihoods of millions of people across the country.

Leading the Charge: India’s Global Climate Commitment

India’s renewable energy achievements are a testament to its unwavering commitment to addressing the global climate crisis. Under the Paris Agreement, India has made bold promises to reduce its emissions and transition toward a low-carbon economy. By 2030, the country has committed to cutting its emissions intensity by 45% compared to 2005 levels, and to sourcing 50% of its cumulative power capacity from non-fossil sources.

These targets align with India’s long-term strategy to reach net-zero emissions by 2070. The nation’s efforts are rooted in the principle of equity, recognizing that the fight against climate change must account for the differing capabilities and responsibilities of countries around the world.

India is not just a participant in the global effort to fight climate change—it is emerging as a leader. The country’s growing renewable energy sector is proving that it’s possible to combat climate change, secure energy independence, and create millions of green jobs in the process.

India’s Renewable Leaders

While India’s renewable energy revolution is a national effort, certain states have emerged as leaders in driving the country’s green energy push. Rajasthan, with its vast land and abundant sunlight, leads the way with 29.98 GW of installed renewable capacity. Gujarat follows closely with 29.52 GW, bolstered by the state’s aggressive solar and wind energy policies. Tamil Nadu, with its coastal wind corridors, contributes 23.7 GW, while Karnataka rounds out the top four with 22.37 GW.

These states are not just providing energy—they are setting the stage for India’s renewable energy future, serving as models for other regions to follow.

The Road Ahead: A Green Energy Future

As India celebrates the achievement of over 200 GW in renewable energy capacity, the country stands at the threshold of even greater accomplishments. With its eyes set firmly on the target of 500 GW by 2030, India is positioning itself not only as a leader in renewable energy but also as a key player in the global fight against climate change.

Government initiatives such as the National Green Hydrogen Mission, the PM-KUSUM(Prime Minister’s Scheme for Farmers’ Energy Security and Upliftment )scheme, and the Production-Linked Incentive (PLI) program for solar photovoltaic modules are all part of India’s broader strategy to enhance its renewable energy capacity and reduce its dependence on fossil fuels.

India’s renewable energy journey is far from over—but the path ahead is clear. By continuing to invest in solar, wind, hydro, and bioenergy, India is not just meeting its energy needs; it is setting an example for the rest of the world to follow.

In the fight against climate change, every gigawatt matters. And India is proving that, when it comes to renewable energy, the world can count on it to deliver.

Dipin is the Co-founder and Editor-in-Chief of EdPublica. A journalist and editor with over 15 years of experience leading and co-founding both print and digital media outlets, he has written extensively on education, politics, and culture. His work has appeared in global publications such as The Huffington Post, The Himalayan Times, DailyO, Education Insider, and others.

Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *

Earth

Meltwater ponds might have sheltered life during earth’s deep freeze

During this time, the planet was believed to be encased in ice, with global temperatures plummeting to as low as -50°C

Published

on

Researchers Ian Hawes (University of Waikato) and Marc Schallenberg (University of Otago) assess the physical and chemical properties of a meltwater pond. Credit: Roger Summons

In a study published in Nature Communications, scientists from MIT have proposed that shallow meltwater ponds may have provided critical refuges for early complex life during one of Earth’s most extreme ice ages — the “Snowball Earth” period, which occurred between 635 and 720 million years ago.

During this time, the planet was believed to be encased in ice, with global temperatures plummeting to as low as -50°C. Despite the harsh conditions, complex cellular life — known as eukaryotes — managed to survive. The new research suggests that these life forms could have found sanctuary in small, briny pools formed on the surface of equatorial ice sheets.

“Meltwater ponds are valid candidates for where early eukaryotes could have sheltered during these planet-wide glaciation events,” said lead author Fatima Husain, a graduate researcher in MIT’s Department of Earth, Atmospheric and Planetary Sciences, in a media statement. “This shows us that diversity is present and possible in these sorts of settings. It’s really a story of life’s resilience.”

The team drew parallels between ancient equatorial ice sheets and modern Antarctic conditions. They studied contemporary meltwater ponds on Antarctica’s McMurdo Ice Shelf — an area first dubbed “dirty ice” by explorers in the early 20th century. These ponds, formed by sun-warmed dark debris trapped within surface ice, provided a modern analog to the possible melt environments of the Cryogenian Period.

Samples taken from these Antarctic ponds revealed clear signatures of eukaryotic life. Using chemical and genetic analysis, including the identification of sterols and ribosomal RNA, the researchers detected algae, protists, and microscopic animals — all descendants of early eukaryotes. Each pond supported unique communities, with differences shaped largely by salinity levels.

“No two ponds were alike,” Husain noted. “There are repeating casts of characters, but they’re present in different abundances. We found diverse assemblages of eukaryotes from all the major groups in all the ponds studied.”

These findings suggest that meltwater ponds — overlooked in previous hypotheses — could have served as vital “above-ice oases” for survival and even diversification during Snowball Earth.

“There are many hypotheses for where life could have survived and sheltered during the Cryogenian, but we don’t have excellent analogs for all of them,” Husain explained. “Above-ice meltwater ponds occur on Earth today and are accessible, giving us the opportunity to really focus in on the eukaryotes which live in these environments.”

The study was co-authored by MIT’s Roger Summons, Thomas Evans (formerly MIT), Jasmin Millar of Cardiff University, Anne Jungblut of the Natural History Museum in London, and Ian Hawes of the University of Waikato in New Zealand.

By uncovering how life may have persisted through Earth’s frozen past, the research not only deepens understanding of our planet’s history — it may also help inform the search for life on icy worlds beyond Earth.

Continue Reading

Earth

In ancient India, mushy earth made for perfume scent

Kannauj, a city in the Indian state of Uttar Pradesh, offers a sustainable alternative in producing perfumes using traditional modes of distillation.

Khushboo Agrahari

Published

on

Copper stills involved in dheg-bhakpa hydro-distillation | Photo Credit: By special arrangement

A sweet scent typically lingers around in the air at Kannauj, an ancient city in India’s most populous state of Uttar Pradesh. It’s an imprint of the countless occasions when it had rained, of roses that bloomed at dawn, and of sandalwood trees that once breathed centuries of calm.. Though mushy smells are not unique to Kannauj, the city utilized traditional distillation methods to make perfume out of these earthly scents.

Kannauj has had a longstanding tradition in perfume-making since four centuries ago. The city, colloquially known as the country’s ancient perfume capital, still uses rustic copper stills, wood-fired ovens, and bamboo pipes leading to sandalwood oil-filled vessels, or attar as it is colloquially known, to make their perfume. Though it gives a pre-industrial look, a closer peek would reveal an ecosystem of complex thermal regulation, plant chemistry, sustainability science, and hydro-distillation chemistry at work.

When synthetically-made but sustainable perfumes, and AI-generated ones share the spotlight today, Kannauj’s tryst with perfumes offer an alternative, sustainable model in traditional distillation, which is inherently low-carbon, zero-waste, and follow principles of a circular economy; all in alignment with sustainable development goals.

Traditional perfume-making is naturally sustainable

In industrial processing, hydro-distillation is a commonly done to separate substances with different boiling points. Heating the liquids produce vapors, which can later be liquefied in a separate chamber. Perfumers in Kannauj follow the same practice, except it promises to be more sustainable with the copper stills, a process colloquially known as dheg-bhakpa hydro-distillation.

There’s no alcohol or synthetic agents in use. Instead, they heat up raw botanicals – such as roses, vetiver roots, jasmine, or even sunbaked clay – to precise temperatures well short of burning, thereby producing fragrant vapor. The vapors are then guided into cooling chambers, where they condense and bond with a natural fixative, often sandalwood oil. Plant residue is the only byproduct, which finds use as organic compost to cultivate another generation of crops.

The setup for dheg-bhapka hydro-distillation to make perfume | Photo Credit: By special arrangement.

Trapping earthly scent to make perfume

In the past five years, Kannauj’s veteran perfumers noticed a quiet, but steady shift in their timely harvest and produce. Rose harvests have moved earlier by weeks. Vetiver roots grow shallower due to erratic rainfall. Jasmine yields are fluctuating wildly. The local Ganges river, which influences humidity levels essential for distillation timing, is no longer as predictable. For an entire natural aromatic economy built on seasonal synchrony, this uncertainty has rung alarm bells.

“The scent of a flower depends not just on the flower itself,” Vipin Dixit, a third-generation attar-maker whose family has distilled fragrance for decades, said to EdPublica.

“It depends on the weather the night before, on the heat at sunrise, on the moisture in the air. Even the soil has a scent-memory.”

Vipin Dixit, a third-generation attar-maker, whose family have distilled fragrance for decades | Photo Credit: By special arrangement.

As a result, perfumers in Kannauj have begun to adapt, applying traditional wisdom through a modern scientific lens. Local distillers are now working with botanists and environmental scientists to study soil microbiomes, measure scent compounds using chromatography, and develop community-based rainwater harvesting to ensure sustainable crop health.

One of the most surprising innovations is trapping petrichor — the scent of first rain — through earth attars. Clay is baked during extreme heat waves, mimicking summer conditions, then distilled to trap the scent of rain hitting dry soil. This aroma, called mitti attar, is one of the few scents in the world created from an environmental phenomenon; and not a flower.

At a time when the world is scrambling to save biodiversity, the humble attar may become a template for green chemistry — one that doesn’t just preserve scent, but also restores the relationship between science, nature, and soul.

Continue Reading

Earth

A Region on the Edge: Ocean Heat, Island Peril, and a Global Wake-up Call

Real-world impacts in the South-West Pacific — from disappearing glaciers to cultural erosion in Fiji — illustrate what is at stake.

Dipin Damodharan

Published

on

Image credit: Gonzalo de Martorell from Pixabay

In a stark warning for the world, the World Meteorological Organization (WMO) released its latest report in June first week, The State of the Climate in the South-West Pacific 2024, painting a vivid picture of escalating climate extremes across ocean and land. The report, released to coincide with the 2025 Global Platform on Disaster Risk Reduction in Geneva and ahead of the 2025 UN Ocean Conference, warns that the South-West Pacific is already grappling with the climate future the rest of the world fears.

A record-breaking Year

2024 marked the warmest year on record for the region, driven by El Niño conditions and unprecedented ocean heating. Nearly 40 million square kilometers — over 10% of the global ocean surface — was scorched by marine heatwaves.

“2024 was the warmest year on record in the South-West Pacific region. Ocean heat and acidification combined to inflict long-lasting damage to marine ecosystems and economies. Sea-level rise is an existential threat to entire island nations. It is increasingly evident that we are fast running out of time to turn the tide,” said WMO Secretary-General Prof. Celeste Saulo in a recent media statement.

The heat was not limited to oceans. Extreme temperatures shattered records in Australia and the Philippines, increasing health risks and straining already vulnerable infrastructure.

Storms, floods, and vanishing ice

The report recounts an unprecedented cyclone season in the Philippines: 12 storms in just three months, affecting over 13 million people and displacing 1.4 million. Meanwhile, Indonesia’s last tropical glacier in New Guinea may vanish by 2026. Satellite estimates show a 30-50% ice loss since 2022.

Precipitation patterns swung to extremes. While Malaysia, Indonesia, and Papua New Guinea faced above-average rainfall and floods, parts of Australia and New Zealand were parched by drought.

The ocean in crisis

The annual sea surface temperature in 2024 was the highest since records began in the early 1980s. Combined with acidification and deoxygenation, ocean warming is devastating marine life and altering storm patterns.

Worryingly, the South-West Pacific sea-level rise already exceeds the global average, threatening islands where over half the population lives within 500 meters of the coast.

Displacement and cultural loss

The Fijian island of Serua, battered by floods and eroding shores, exemplifies the dire choices communities must make.

Despite government offers to relocate, many residents resist because of their deep connection to the land, or “vanua,” a concept embedding identity, spirituality, and ancestry.

“On two separate occasions, the island experienced such extreme flooding that it was possible to cross the entire island by boat without encountering land,” the WMO report said.

Hope in anticipation: Early warnings save lives

Not all is bleak. A case study from the Philippines showcased how early warning systems and anticipatory action helped mitigate the toll of the 2024 cyclone season. The Food and Agriculture Organization’s anticipatory action teams helped relocate fishing boats and distribute cash aid ahead of the storms.

“While the frequency of tropical cyclones may decrease, their intensity will rise. Building resilience is essential,” the report warns.

A Global Response: UNOC3 Signals Change, But Action Must Follow

As the WMO’s warnings echoed, the United Nations Ocean Conference (UNOC3) concluded in Nice, France (June 9-13, 2025), providing a parallel platform of hope and accountability.

  • The High Seas Treaty reached 49 ratifications, nearing the 60 needed for enforcement.
  • Nearly $10 billion in funding was pledged for ocean health, though experts note that the real need is $175 billion annually.
  • Countries endorsed the 30×30 conservation goal and backed measures against deep-sea mining and plastic pollution.

“We must move from plunder to protection,” said UN Secretary-General António Guterres in his closing address.

These developments reinforce the urgency of the WMO findings. Real-world impacts in the South-West Pacific — from disappearing glaciers to cultural erosion in Fiji — illustrate what is at stake.

The South-West Pacific is not a distant front line. It is the epicenter of an unfolding climate reality. With international mechanisms like the High Seas Treaty nearing activation and early warning systems proving effective, the question is no longer whether we can respond — but whether we will act in time.

As the seas rise and the clock ticks, it’s not just islands at risk. It’s the future of global climate stability.

Continue Reading

Trending