Connect with us

Know The Scientist

Joseph Rotblat: What led the nuclear peace activist to quit the Manhattan Project?

Joseph Rotblat was once associated with the Manhattan Project, which led to the invention of nuclear weapons. But what made him change his heart to quit the project and fight against nuclear weapons for the rest of his career?

Karthik Vinod

Published

on

Credit: Jijin M.K. / EdPublica

Are all scientific advancements beneficial to humankind? No. But then why do we invent them?

Nuclear weapons were seen by many of the Manhattan Project scientists, famously Robert Oppenheimer, thought it was necessary evil

But Joseph Rotblat, a Polish nuclear physicist was one of the first converts who left the Manhattan Project, to advocate for a total reversal and elimination of nuclear weapons.

A political chain reaction ensued following the war, with world powers scrambling nuclear weapons claiming deterrence. These weapons meanwhile grew ever more powerful in capacity, to cause more misery and damage. In fact, there’s enough nuclear weapons shared between the US and Russia now, to annihilate human civilization itself.

Then, Rotblat entered the fore setting up the Pugwash Conference on Science and World Affairs in 1957, with British philosopher and mathematician Bernard Russell, to advocate for phasing out nuclear weapons. Pugwash Conferences were influential and successful in bringing scientists and scholars across ideological spectrums to debate solutions while advocating for a nuclear weapon-free world. It helped influence policy decisions – pushing for test ban treaties in international politics. 

The Cold War then ended, and there was some relief – the world hadn’t gone into For Rotblat and Pugwash’s efforts, they were jointly awarded the 1995 Nobel Peace Prize, “for their efforts to diminish the part played by nuclear arms in international politics and, in the longer run, to eliminate such arms.” 

However, it’s perhaps interesting to know what really drove the now revered nuclear peace activist to even join the nuclear weapons program in the first place. 

Nuclear fission and World War II

For one, he too was driven like many in his generation, prior to World War II that Adolf Hitler’s Germany could develop and use a nuclear bomb. Germany was then the superpower in physics, although it stagnated following mass resignations and boycotts against Jewish physicists – many of whom heralded the 20th century revolution in physics – including the likes of Albert Einstein and Max Planck.

Rotblat had moved to Liverpool, UK in 1939 from his native Poland to learn how to build a cyclotron with James Chadwick – the physics Nobel laureate who discovered the subatomic neutron particle. As much as he successfully split the uranium nucleus, he was split from his wife in Poland forever – at the onset of World War II.

Tola was ailing from appendicitis, because of which she couldn’t make it to Liverpool before war broke out. Despite Rotblat’s efforts to seek asylum in the UK, she never escaped. The last Rotblat heard from her was through a letter in December 1940. Rotblat was clearly distraught – although at the same time, he spent his time and energy with the fast neutron research group with Chadwick back in Liverpool.  Rotblat would never know until the war would end, that Tola and her mother were killed at the Belzec concentration camp in occupied Poland by 1941. 

Unbeknownst to him, the British military intelligence did know about Tola’s death back in 1941, though Rotblat wasn’t informed then. Rotblat’s psyche was quite different from other physicists. 

Joseph Rotblat’s badge photograph during the Manhattan Project. Credit: Los Alamos Laboratory / Wikimedia

When the Quebec Agreement was signed by the UK to help the US with the Manhattan Project, Rotblat had his conscience stricken. Physicists apparently had their set of reasons to join this war-time effort to develop a bomb. Rotblat, like most others, willingly joined the Project believing inventing the bomb can offer deterrence against a German bomb. Many others, in Rotblat’s own admission, simply joined to not have their careers jeopardized by the government.

A mentor in Ludwik Wertenstein 

Rotblat was a ‘pure scientist’ in that he seeked to avoid the moral scrupulousness that he knew would plague him if it turned out that the nuclear weapon would be used. Back in Poland when he was an undergrad, he found a mentor in the Polish experimental physicist, Ludwik Wertenstein. Rotblat mentioned how Wertenstein helped find something about himself – concurring with the belief that science wasn’t neutral, or wasn’t some discipline divorced from our social reality. And thus scientists themselves were partly answerable for reasons of its end-usage. Rotblat saw in Wertenstein who he too was – a strong believer in ethics. 

Ludwik Wertenstein. Credit: Wikimedia

Rotblat would have remembered what Wertenstein would advise him when he was stuck between a rock and a hard place. Use your conscience, he would say. To Rotblat, Wertenstein was a ‘counselor and friend’ in addition to being a teacher. Rotblat had briefed Wertenstein, before the latter joined the Polish war effort, about Germany potentially developing a nuclear bomb. Wertenstein was clear that he wouldn’t work on a program to deter Germany, at the cost of abandoning his core moral principle of bringing benefit to all mankind. 

Fortunately for Rotblat, he had an option to quit the Manhattan Project almost as soon as he had arrived. Military intelligence in 1944 confirmed the Germans had abandoned their efforts to develop a nuclear bomb. Rotblat, seeing no reason to develop one, was allowed to leave. 

Researching ‘nuclear medicine’ to save lives

After learning of his wife Tola’s death, he refused to remarry. He was now armed with a newfound conviction to end his association with his career in nuclear research on a better note. 

Wertenstein’s persona captured him truly in that he made advances to unleash nuclear energy in a form to save people’s lives rather than take away them.

In 1949, Rotblat joined Londons’ St. Bartholomew’s Hospital, as Professor of Medical Physics. There, he made phenomenal advances in nuclear medicine, for instance studying the biological effects of radioactivity – and research that would help his case to bring to light the effects nuclear weapons would have on the human body. 

He even at one stage suggested young scientists graduate from universities taking a Hippocratic Oath like medical doctors do. 

At his Nobel Lecture titled ‘Remember Your Humanity’, Rotblat stressed on the need for scientists to take up ownership for their work’s impact on society.  

“You are doing fundamental work, pushing forward the frontiers of knowledge, but often you do it without giving much thought to the impact of your work on society. Precepts such as ‘science is neutral’ or ‘science has nothing to do with politics,’ still prevail. They are remnants of the ivory tower mentality, although the ivory tower was finally demolished by the Hiroshima bomb.” 

Rotblat’s journey has some insights for the world we live in today. He said in the same Nobel Lecture, that our post-Cold War world doesn’t require Cold War thinking. Although the major nuclear powers are all signatories of the Non-Proliferation Treaty (NPT), nuclear arsenals are yet to be phased out.

With nuclear powers unwilling to relent and work through a solution, only scientists can play a vital role. How? By simply doing what Rotblat did. Leave holding your head held high.

Know The Scientist

Remembering S.N. Bose, the underrated maestro in quantum physics

Rejected in Britain, celebrated by Einstein, here’s the story of S.N. Bose, the Indian physicist who formulated quantum statistics, now a bedrock theory in condensed matter physics.

Karthik Vinod

Published

on

SN Bose image credit: Wikimedia Commons. Illustration/EP

It’s 1924, and Satyendra Nath Bose, going by S.N. Bose was a young physicist teaching in Dhaka, then British India. Grappled by an epiphany, he was desperate to have his solution, fixing a logical inconsistency in Planck’s radiation law, get published. He had his eyes on the British Philosophical Magazine, since word could spread to the leading physicists of the time, most if not all in Europe. But the paper was rejected without any explanations offered. 

But he wasn’t going to give up just yet. Unrelenting, he sent another sealed envelope with his draft and this time a cover letter again, to Europe. One can imagine months later, Bose breathing out a sigh of relief when he finally got a positive response – from none other than the great man of physics himself – Albert Einstein. 

In some ways, Bose and Einstein were similar. Both had no PhDs when they wrote their treatises that brought them into limelight. And Einstein introduced E=mc2 derived from special relativity with little fanfare, so did Bose who didn’t secure a publisher with his groundbreaking work that invented quantum statistics. He produced a novel derivation of the Planck radiation law, from the first principles of quantum theory. 

This was a well-known problem that had plagued physicists since Max Planck, the father of quantum physics himself. Einstein himself had struggled time and again, to only have never resolved the problem. But Bose did, and too nonchalantly with a simple derivation from first principles grounded in quantum theory. For those who know some quantum theory, I’m referring to Bose’s profound recognition that the Maxwell-Boltzmann distribution that holds true for ideal gasses, fails for quantum particles. A technical treatment of the problem would reveal that photons, that are particles of light with the same energy and polarization, are indistinguishable from each other, as a result of the Pauli exclusion principle and Heisenberg’s uncertainty principle. 

Fascinated and moved by what he read, Einstein was magnanimous enough to have Bose’s paper translated in German and published in the journal, Zeitschrift für Physik in Germany the same year. It would be the beginning of a brief, but productive professional collaboration between the two theoretical physicists, that would just open the doors to the quantum world much wider. Fascinatingly, last July marked the 100 years since Einstein submitted Bose’s paper, “Planck’s law and the quantum hypothesis” on his behalf to Zeitschrift fur Physik. 

With the benefit of hindsight, Bose’s work was really nothing short of revolutionary for its time. However, a Nobel Committee member, the Swedish Oskar Klein – and theoretical physicist of repute – deemed it a mere advance in applied sciences, rather than a major conceptual advance. With hindsight again, it’s a known fact that Nobel Prizes are handed in for quantum jumps in technical advancements more than ever before. In fact, the 2001 Nobel Prize in Physics went to Carl Wieman, Eric Allin Cornell, and Wolfgang Ketterle for synthesizing the Bose-Einstein condensate, a prediction made actually by Einstein based on Bose’s new statistics. These condensates are created when atoms are cooled to near absolute zero temperature, thus attaining the quantum ground state. Atoms at this state possess some residual energy, or zero-point energy, marking a macroscopic phase transition much like a fourth state of matter in its own right. 

Such were the changing times that Bose’s work received much attention gradually. To Bose himself, he was fine without a Nobel, saying, “I have got all the recognition I deserve”. A modest character and gentleman, he resonates a lot with the mental image of a scientist who’s a servant to the scientific discipline itself.

But what’s more upsetting is that, Bose is still a bit of a stranger in India, where he was born and lived. He studied physics at the Presidency College, Calcutta under the tutelage that saw other great Indian physicists, including Jagdish Chandra Bose and Meghnad Saha. He was awarded the Padma Vibhushan, the highest civilian award by the Government of India in 1954. Institutes have been named in his honour, but despite this, his reputation has little if no mention at all in public discourse. 

To his physicists’ peers in his generation and beyond, he was recognized in scientific lexicology. Paul Dirac, the British physicist coined the name ‘bosons’ in Bose’s honor (‘bose-on’). These refer to quantum particles including photons and others with integer quantum spins, a formulation that arose only because of Bose’s invention of quantum statistics. In fact, the media popular, ‘god particle’, the Higgs boson, carries a bit of Bose as much as it does of Peter Higgs who shared the 2013 Nobel Prize in Physics with Francois Euglert for producing the hypothesis. 

Continue Reading

Know The Scientist

Narlikar – the rare Indian scientist who penned short stories

Jayant Narlikar has been one of the most prolific scientists, and science communicators India has ever produced. The octogenarian had died at his residence in Pune.

Karthik Vinod

Published

on

Jayant Narlikar | Photo Courtesy: Wikimedia

Jayant Narlikar passed away at his Pune residence on Tuesday. He was 86-years old, and had been diagnosed with cancer. With his demise, India lost a prolific scientist, writer, and institution builder.

In 2004, the government of India had honored Narlikar with the Padma Vibhushan, the second-highest civilian award, for his services to science and society. But that was not his first recognition from the Indian government. At the age of 26, he had received his first Padma Bhushan, in recognition for his work in cosmology, studying the universe’s large-scale structures. He helped contribute to derive Einstein’s field equations of gravity from a more general theory. That work, dubbed the Narlikar-Hoyle theory of gravity, was borne out a collaboration with Narlikar’s doctoral degree supervisor at Cambridge; Fred Hoyle, the then leading astrophysicist of his time.

Narlikar and the steady-state theory

Narlikar and Hoyle bonded over a shared skepticism towards the prevalent Big Bang hypothesis, which sought to extrapolate the universe’s ongoing expansion to its birth at some finite time in the past. However, Narlikar and Hoyle could not have been more opposed, mostly out of their own philosophical beliefs. They drew upon the works of 19th century Austrian physicist and philosopher, Ernest Mach, in rejecting a theory discussing the universe’s beginning in the absence of a reference frame. As such, Narlikar was a strong proponent of Hoyle’s steady-state model of the universe, in which the universe is infinite in extent, and indefinitely old. As such, the steady-state theorists explained away the universe’s expansion to matter being spawned into existence from this vacuum at every instant, aka a C-field.

In the Big Bang hypothesis, an expanding universe causes matter to dilute over time. Whereas in steady-state theory, spawning matter from thin vacuum ensures that the density remains unchanged over time. Credit: Wikimedia

However, the steady-state’s predictions did not hold up in face of evidence the universe expands over time. Nor did its successive avatar, the quasi-steady state theory devised sway scientific consensus. The death knell came when evidence of the cosmic microwave background (aka the CMB) was discovered in 1964.

Despite steady-state’s failure, it provided healthy rivalry to the Big Bang from the 1940s to the 60s, providing opportunities for astronomers to compare observations to precise predictions. In the words of the Nobel laureate Steven Weinberg, “In a sense, this disagreement is a credit to the model; alone among all cosmologies, the steady state model makes such definite predictions that it can be disproved even with the limited observational evidence at our disposal.”

The Kalinga winning short-story writer

Narlikar was more than just a cosmologist, studying the large-scale structure of the universe. He also had been an acclaimed science fiction writer, with his works penned in English, Hindi, and in his vernacular, Marathi. His famous work was a short-story, Dhoomekethu (The Comet), revolving around themes of superstition, faith, rational and scientific thinking. Published in Marathi in 1976, with translations available in Hindi, the story was adapted later into a two-hour film bearing the same name. In 1985, the film aired on the state-owned television broadcasting channels, Doordarshan.

In a way, he was India’s Carl Sagan, airing episodes explaining astronomical concepts, with children being his target audience. The seventeen-episode show, Brahmand (The Universe), aired in 1994, to popular acclaim. One of his most popular books, Akashashi Jadle Nathe (Sky-Rooted Relationship), remains popular. An e-book version in Hindi is available on Goodreads, with 470 reviewers lending an average rating of 4.7 out of 5.

His efforts was honored with an international prize. In 1996, he received the much-coveted Kalinga Prize for the Popularization of Science, awarded annually in India by the United Nations Educational, Scientific and Cultural Organization (UNESCO), “in recognition of his efforts to popularize science through print and electronic media.” Narlikar had been only the second Indian at the time, after the popular science writer Jagjit Singh, to have received the award.

When Narlikar returned to India, accepting a position at the Tata Institute of Fundamental Research (TIFR), he realized that the fruits of astrophysical research did not flourish outside central institutions. Though Bengaluru had an Indian Institute of Astrophysics, Narlikar envisioned basing a research culture paralleling his time at Cambridge. Hence, the Inter-University Centre for Astronomy and Astrophysics (IUCAA) was born in 1988, and Narlikar was appointed its founding director. Arguably, his most visible legacy would have been to shape India’s astrophysical research culture through his work with the IUCAA (pronounced “eye-you-ka”).

Continue Reading

Know The Scientist

Dr. Nikku Madhusudhan Brings Us Closer to Finding Life Beyond Earth

Dr. Madhusudhan, a leading Indian-British astrophysicist at the University of Cambridge, has long been on the frontlines of the search for extraterrestrial life

Published

on

Somewhere in the vast, cold dark of the cosmos, a planet orbits a distant star. It’s not a place you’d expect to find life—but if Dr. Nikku Madhusudhan is right, that assumption may soon be history.

Dr. Madhusudhan, a leading Indian-British astrophysicist at the University of Cambridge, has long been on the frontlines of the search for extraterrestrial life or what we call the alien life. This month, his team made headlines around the world after revealing what could be the strongest evidence yet of life beyond Earth—on a distant exoplanet known as K2-18b.

Using data from NASA’s James Webb Space Telescope, Madhusudhan and his collaborators detected atmospheric signatures of molecules commonly associated with biological processes on Earth—specifically, gases produced by marine phytoplankton and certain bacteria. Their analysis suggests a staggering 99.7% probability that these molecules could be linked to living organisms.

“This marked the first detection of carbon-bearing molecules in the atmosphere of an exoplanet located within the habitable zone,” the University of Cambridge said in a press statement. “The findings align with theoretical models of a ‘Hycean’ planet — a potentially habitable, ocean-covered world enveloped by a hydrogen-rich atmosphere.”

Born in India, Dr. Madhusudhan began his journey in science with an engineering degree from IIT (BHU) Varanasi

In addition, a fainter signal suggested there could be other unexplained processes occurring on K2-18b. “We didn’t know for sure whether the signal we saw last time was due to DMS, but just the hint of it was exciting enough for us to have another look with JWST using a different instrument,” said Professor Nikku Madhusudhan in a news report released by the University of Cambridge.

The man behind the mission

Born in India, Dr. Madhusudhan began his journey in science with an engineering degree from IIT (BHU) Varanasi. But it was during his time at the Massachusetts Institute of Technology (MIT), under the mentorship of exoplanet pioneer Prof. Sara Seager, that he found his calling. His doctoral work—developing methods to retrieve data from exoplanet atmospheres—would go on to form the backbone of much of today’s planetary climate modeling.

Now a professor at the University of Cambridge’s Institute of Astronomy, Madhusudhan leads research that straddles the line between science fiction and frontier science.

A Universe of Firsts

Over the years, his work has broken new ground in our understanding of alien worlds. He was among the first to suggest the concept of “Hycean planets”—oceans of liquid water beneath hydrogen-rich atmospheres, conditions which may be ideal for life. He also led the detection of titanium oxide in the atmosphere of WASP-19b and pioneered studies of K2-18b, the same exoplanet now back in the spotlight.

His team’s recent findings on K2-18b may be the closest humanity has ever come to detecting life elsewhere in the universe.

Accolades and impact

Madhusudhan’s contributions have earned him global recognition. He received the prestigious IUPAP Young Scientist Medal in 2016 and the MERAC Prize in Theoretical Astrophysics in 2019. In 2014, the Astronomical Society of India awarded him the Vainu Bappu Gold Medal for outstanding contributions to astrophysics by a scientist under 35.

But for Madhusudhan, the real reward lies in the questions that remain unanswered.

Looking ahead

Madhusudhan cautions that, while the findings are promising, more data is needed before drawing conclusions about the presence of life on another planet. He remains cautiously optimistic but notes that the observations on K2-18b could also be explained by previously unknown chemical processes. Together with his colleagues, he plans to pursue further theoretical and experimental studies to investigate whether compounds like DMS and DMDS could be produced through non-biological means at the levels currently detected.

Beyond the lab, Madhusudhan remains dedicated to mentoring students and advancing scientific outreach. He’s a firm believer that the next big discovery might come from a student inspired by the stars, just as he once was.

As scientists prepare for the next wave of data and the world watches closely, one thing is clear: thanks to minds like Dr. Nikku Madhusudhan’s, the search for life beyond Earth is no longer a distant dream—it’s a scientific reality within reach.

Continue Reading

Trending