Know The Scientist
Joseph Rotblat: What led the nuclear peace activist to quit the Manhattan Project?
Joseph Rotblat was once associated with the Manhattan Project, which led to the invention of nuclear weapons. But what made him change his heart to quit the project and fight against nuclear weapons for the rest of his career?

Are all scientific advancements beneficial to humankind? No. But then why do we invent them?
Nuclear weapons were seen by many of the Manhattan Project scientists, famously Robert Oppenheimer, thought it was necessary evil.
But Joseph Rotblat, a Polish nuclear physicist was one of the first converts who left the Manhattan Project, to advocate for a total reversal and elimination of nuclear weapons.
A political chain reaction ensued following the war, with world powers scrambling nuclear weapons claiming deterrence. These weapons meanwhile grew ever more powerful in capacity, to cause more misery and damage. In fact, there’s enough nuclear weapons shared between the US and Russia now, to annihilate human civilization itself.
Then, Rotblat entered the fore setting up the Pugwash Conference on Science and World Affairs in 1957, with British philosopher and mathematician Bernard Russell, to advocate for phasing out nuclear weapons. Pugwash Conferences were influential and successful in bringing scientists and scholars across ideological spectrums to debate solutions while advocating for a nuclear weapon-free world. It helped influence policy decisions – pushing for test ban treaties in international politics.
The Cold War then ended, and there was some relief – the world hadn’t gone into For Rotblat and Pugwash’s efforts, they were jointly awarded the 1995 Nobel Peace Prize, “for their efforts to diminish the part played by nuclear arms in international politics and, in the longer run, to eliminate such arms.”
However, it’s perhaps interesting to know what really drove the now revered nuclear peace activist to even join the nuclear weapons program in the first place.
Nuclear fission and World War II
For one, he too was driven like many in his generation, prior to World War II that Adolf Hitler’s Germany could develop and use a nuclear bomb. Germany was then the superpower in physics, although it stagnated following mass resignations and boycotts against Jewish physicists – many of whom heralded the 20th century revolution in physics – including the likes of Albert Einstein and Max Planck.
Rotblat had moved to Liverpool, UK in 1939 from his native Poland to learn how to build a cyclotron with James Chadwick – the physics Nobel laureate who discovered the subatomic neutron particle. As much as he successfully split the uranium nucleus, he was split from his wife in Poland forever – at the onset of World War II.
Tola was ailing from appendicitis, because of which she couldn’t make it to Liverpool before war broke out. Despite Rotblat’s efforts to seek asylum in the UK, she never escaped. The last Rotblat heard from her was through a letter in December 1940. Rotblat was clearly distraught – although at the same time, he spent his time and energy with the fast neutron research group with Chadwick back in Liverpool. Rotblat would never know until the war would end, that Tola and her mother were killed at the Belzec concentration camp in occupied Poland by 1941.
Unbeknownst to him, the British military intelligence did know about Tola’s death back in 1941, though Rotblat wasn’t informed then. Rotblat’s psyche was quite different from other physicists.

Joseph Rotblat’s badge photograph during the Manhattan Project. Credit: Los Alamos Laboratory / Wikimedia
When the Quebec Agreement was signed by the UK to help the US with the Manhattan Project, Rotblat had his conscience stricken. Physicists apparently had their set of reasons to join this war-time effort to develop a bomb. Rotblat, like most others, willingly joined the Project believing inventing the bomb can offer deterrence against a German bomb. Many others, in Rotblat’s own admission, simply joined to not have their careers jeopardized by the government.
A mentor in Ludwik Wertenstein
Rotblat was a ‘pure scientist’ in that he seeked to avoid the moral scrupulousness that he knew would plague him if it turned out that the nuclear weapon would be used. Back in Poland when he was an undergrad, he found a mentor in the Polish experimental physicist, Ludwik Wertenstein. Rotblat mentioned how Wertenstein helped find something about himself – concurring with the belief that science wasn’t neutral, or wasn’t some discipline divorced from our social reality. And thus scientists themselves were partly answerable for reasons of its end-usage. Rotblat saw in Wertenstein who he too was – a strong believer in ethics.

Ludwik Wertenstein. Credit: Wikimedia
Rotblat would have remembered what Wertenstein would advise him when he was stuck between a rock and a hard place. Use your conscience, he would say. To Rotblat, Wertenstein was a ‘counselor and friend’ in addition to being a teacher. Rotblat had briefed Wertenstein, before the latter joined the Polish war effort, about Germany potentially developing a nuclear bomb. Wertenstein was clear that he wouldn’t work on a program to deter Germany, at the cost of abandoning his core moral principle of bringing benefit to all mankind.
Fortunately for Rotblat, he had an option to quit the Manhattan Project almost as soon as he had arrived. Military intelligence in 1944 confirmed the Germans had abandoned their efforts to develop a nuclear bomb. Rotblat, seeing no reason to develop one, was allowed to leave.
Researching ‘nuclear medicine’ to save lives
After learning of his wife Tola’s death, he refused to remarry. He was now armed with a newfound conviction to end his association with his career in nuclear research on a better note.
Wertenstein’s persona captured him truly in that he made advances to unleash nuclear energy in a form to save people’s lives rather than take away them.
In 1949, Rotblat joined Londons’ St. Bartholomew’s Hospital, as Professor of Medical Physics. There, he made phenomenal advances in nuclear medicine, for instance studying the biological effects of radioactivity – and research that would help his case to bring to light the effects nuclear weapons would have on the human body.
He even at one stage suggested young scientists graduate from universities taking a Hippocratic Oath like medical doctors do.
At his Nobel Lecture titled ‘Remember Your Humanity’, Rotblat stressed on the need for scientists to take up ownership for their work’s impact on society.
“You are doing fundamental work, pushing forward the frontiers of knowledge, but often you do it without giving much thought to the impact of your work on society. Precepts such as ‘science is neutral’ or ‘science has nothing to do with politics,’ still prevail. They are remnants of the ivory tower mentality, although the ivory tower was finally demolished by the Hiroshima bomb.”
Rotblat’s journey has some insights for the world we live in today. He said in the same Nobel Lecture, that our post-Cold War world doesn’t require Cold War thinking. Although the major nuclear powers are all signatories of the Non-Proliferation Treaty (NPT), nuclear arsenals are yet to be phased out.
With nuclear powers unwilling to relent and work through a solution, only scientists can play a vital role. How? By simply doing what Rotblat did. Leave holding your head held high.
Know The Scientist
Mysterious, resilient, and radiant: The timeless legacy of Marie Curie
A scientist in her own right, a symbol of resilience, and a martyr to science—Marie Curie’s life was as radioactive as her path-breaking discoveries

Science is not only a pursuit of knowledge, but a passion that can consume a life—sometimes even the very body of its creator. This is the dramatic tale of one such life, the life of Marie Curie, whose pioneering contributions to science forever altered the course of history.
Marie Curie, a name synonymous with perseverance and scientific brilliance, lived and died for science, transforming the world with her discoveries. Her life was one of constant struggle against societal norms, poverty, and personal loss, yet she rose to become one of the most celebrated scientists in history—earning two Nobel Prizes, in two different fields, in a time when women were largely excluded from the scientific community. Her relentless pursuit of knowledge, and the cost at which she achieved it, continues to inspire generations of scientists.

The Struggles of a Childhood
Born Maria Salomea Skłodowska on November 7, 1867, in Warsaw, Poland—then under Russian rule—Marie came from a family of educators who instilled in her a love for learning. However, her early life was filled with hardship. At just nine years old, she lost her sister, and at eleven, her mother passed away from tuberculosis. These tragic losses shaped her character, leading her to abandon her Christian faith and fueling her desire to escape the constraints of her environment through education.
In a country where higher education was largely inaccessible to women, Marie defied all odds. She secretly studied at the “Flying University,” a clandestine institution offering advanced learning despite the Russian occupation. After years of financial hardship and personal sacrifice, she moved to Paris in 1891 to attend the Sorbonne (University of Paris), where she earned degrees in physics, chemistry, and mathematics.
The Meeting of Minds: Pierre Curie
It was in Paris that Marie met Pierre Curie, a brilliant physicist whose work on magnetism and crystallography was already well known. Their intellectual partnership quickly blossomed into a romantic one. In 1895, they married, and together they embarked on cutting-edge research in radioactivity, a term that Marie herself coined.

Though their early years were marked by financial difficulties—Marie sometimes had to work as a governess to support her research—the couple’s scientific collaborations were prodigious. In 1898, they discovered the elements Polonium (named after Marie’s homeland, Poland) and Radium, forever altering the landscape of chemistry and physics.
A Breakthrough: Radioactivity
Their work was transformative. While investigating the properties of uranium, the Curies discovered that certain materials emitted a form of energy that could penetrate matter. This discovery laid the foundation for the study of radioactivity. Marie Curie’s research, however, was far from simple theory. She showed that uranium’s radioactivity was intrinsic to the atom, a revolutionary insight that led to the birth of atomic physics.
In 1903, Marie and Pierre Curie, along with Henri Becquerel, were awarded the Nobel Prize in Physics for their pioneering work in radioactivity. It was an extraordinary achievement, and Marie became the first woman ever to receive a Nobel Prize. This historic honour, however, was only the beginning.
Personal Tragedy and Triumph
Marie’s life, though marked by scientific triumph, was also filled with personal tragedy. In 1906, just three years after receiving the Nobel Prize, Pierre Curie was tragically killed in a street accident. His death left Marie devastated, but her resilience was remarkable. She took over his position as a professor at the Sorbonne, becoming the first woman to hold such a post at the prestigious university.

Marie’s drive and determination did not wane in the face of personal loss. In 1911, she was awarded the Nobel Prize in Chemistry for her work in isolating pure radium and polonium, making her the first person—and remains the only woman—to win Nobel Prizes in two different scientific fields. Her acceptance speech, in which she credited her late husband Pierre, moved many to tears.
The War Effort and Her Legacy

As the First World War broke out in 1914, Marie’s scientific genius took on a new form. Understanding the importance of radiology in medicine, she took her research to the battlefield. With the help of her colleagues, Marie developed mobile X-ray units—called “Little Curies”—which she personally drove to the front lines to assist in diagnosing injuries. Her efforts saved countless lives, and during the war, more than a million soldiers received X-ray examinations due to her work.
Despite her scientific fame, Marie’s health began to deteriorate due to her constant exposure to radioactive materials. The very substances she had spent her life researching were slowly poisoning her. In 1934, Marie Curie passed away from aplastic anemia, a disease caused by the prolonged exposure to radiation.
The Aftermath of Her Discoveries
In an odd twist, the very radioactive materials that made Marie Curie famous also played a role in her untimely death. Her personal belongings, including books, notes, and even her clothing, remained highly radioactive long after her death. In fact, her laboratory notebooks, now preserved in Paris, are still radioactive today—scientists must wear protective gear to handle them.

The legacy of Marie Curie, however, is far more than the danger of radiation. Her work laid the groundwork for cancer treatments, nuclear energy, and the development of atomic weapons. Yet, Curie herself was deeply committed to the idea that scientific discoveries should be used for the benefit of humanity, not destruction. During her life, she was adamant that the energy she discovered could and should be used to improve health and welfare, not war.
A Family Legacy of Science
Marie’s daughters, Irène and Ève, carried on the family legacy of scientific achievement. Irène, like her mother and father, went on to win the Nobel Prize in Chemistry in 1935 for her work on radioactivity, making the Curies one of the few families to have produced multiple Nobel laureates. Irène’s own life, unfortunately, was similarly marked by tragedy, as she, too, suffered from leukemia—a consequence of the radiation exposure passed down through the family.
While Ève, the younger daughter, pursued a career in writing and journalism, it was the scientific legacy of her parents that endured. Today, the Curie family’s contributions to science continue to be honored worldwide.
The Legacy That Lives On
In today’s world, the impact of Marie Curie’s work is felt across many disciplines. The very essence of nuclear science, from energy generation to medical diagnostics, is built on the foundation that she and her husband established. The applications of her discoveries are so widespread that it’s impossible to escape their relevance. From life-saving cancer treatments using radium and radiation therapy to modern-day technologies such as X-rays and PET scans, Curie’s discoveries have directly influenced these advancements.

In an age where scientific innovation continues to transform society, Marie Curie’s life serves as a reminder of the sacrifices scientists make in pursuit of knowledge. Her resilience, determination, and focus on contributing to the greater good are attributes that resonate deeply in today’s world of rapid technological change and the constant battle against existential global challenges like climate change, energy crises, and health pandemics. The courage to ask difficult questions, confront the unknown, and risk everything for the betterment of humanity is something that continues to inspire not just scientists but anyone who seeks to push the boundaries of what is possible.
Her story also speaks to the ongoing fight for gender equality in science. Despite the significant strides made toward inclusivity, women remain underrepresented in scientific fields, particularly in leadership roles. Marie Curie’s legacy reminds us of the importance of diversity in innovation and the need to break down barriers to ensure that talent, regardless of gender, is nurtured and celebrated.

Curie’s life has transcended time and continues to inspire, even in the 21st century. The 2019 biographical film Radioactive, based on her life, brought her story to a new generation, exploring not just her scientific achievements but also the personal struggles and sacrifices she made. The film serves as a testament to the complexities of her legacy—both as a scientist who reshaped the future and as a woman who defied societal norms to do so.
A Life That Still Glows
Marie Curie’s contributions to science were not just about discovering new elements or phenomena; they were about changing the way humanity understood the world. She unlocked the mysteries of the atom and laid the groundwork for technologies that are still saving lives today. She did so at great personal cost, but her story is not just one of sacrifice—it’s one of triumph, resilience, and an unwavering dedication to science.
Even now, decades after her death, Marie Curie’s discoveries continue to illuminate the way forward in fields like medicine, energy, and environmental science. Her life reminds us that science is not just about the lab or the classroom; it is about the real-world impact that research can have on improving human lives and addressing global challenges.
References:
1. Curie, M. (1923). Pierre Curie (Autobiography).
2. “Marie Curie: A Biography” by Susan Quinn. (1995).
3. Marie Curie (2019) directed by Marjane Satrapi.
4. “Radium and Its Applications in Medicine: The Legacy of Marie Curie” by Francesca Rossi. (Journal of Nuclear Medicine, 2012).
5. The Life and Legacy of Marie Curie by Rosalind P. Williams. (Oxford University Press, 2009).
Know The Scientist
Pierre Curie: The precision of a scientific pioneer
Pierre Curie is perhaps best known for his work on magnetism

Pierre Curie (1859–1906) was a man whose legacy has shaped the course of modern science, yet his name is often overshadowed by that of his famous wife, Marie Curie. Despite this, Pierre’s contributions to physics, particularly in the field of magnetism and the discovery of radioactivity, were revolutionary and continue to influence scientific research today.
Early Life and Education
Born in Paris on May 15, 1859, Pierre Curie grew up in an intellectually stimulating environment. His father, Eugene, was a physician, and his mother, Sophie, was a teacher, which cultivated in Pierre a deep passion for learning. From an early age, Pierre showed an exceptional aptitude for mathematics and physics, subjects that would later define his career.
By the time Pierre was 16, he had already completed his studies in mathematics and physics, earning a degree from the prestigious Sorbonne University in Paris. This early foundation in scientific inquiry laid the groundwork for his future innovations.
In 1895 together with his brother Jacques Curie, Pierre Curie developed the Curie point—the temperature at which certain magnetic materials lose their magnetism
Innovative Work in Magnetism and Crystallography
Pierre Curie is perhaps best known for his work on magnetism. In 1895, together with his brother Jacques Curie, he developed the Curie point—the temperature at which certain magnetic materials lose their magnetism. This work, foundational in the study of thermodynamics and magnetism, continues to be a key concept in modern physics.
Additionally, Pierre Curie’s research in crystallography and his study of the magnetic properties of materials played a pivotal role in the development of solid-state physics. His work laid the foundation for understanding the relationship between a material’s structure and its magnetic properties, which remains essential in materials science today.
The Discovery of Radioactivity
However, Pierre Curie’s most significant contribution came from his work on radioactivity, which would forever alter the understanding of matter itself. In the late 19th century, the mysterious rays emitted by certain substances, like uranium, intrigued scientists. Working alongside his wife, Marie Curie, Pierre embarked on a series of experiments to better understand this phenomenon.
Their work, starting in 1898, led to the discovery of two new elements: polonium and radium. Marie Curie coined the term “radioactivity” to describe the spontaneous emission of radiation from these elements, but it was Pierre’s precise experimental methods and scientific rigor that helped bring clarity to the phenomenon. Their discovery of radium, in particular, was a breakthrough that would lead to numerous advancements in medical treatments, including cancer therapy.
Nobel Recognition and Collaboration with Marie Curie
In 1903, Pierre Curie, together with Marie Curie and Henri Becquerel, was awarded the Nobel Prize in Physics for their joint work on radioactivity. The recognition marked the first time a Nobel Prize had been awarded to a couple. However, what makes this achievement particularly notable is that Pierre Curie insisted that Marie be included in the award, a gesture that demonstrated not only his scientific partnership with his wife but also his support for women in science, a rare stance in the male-dominated field of the time.
Tragically, Pierre Curie’s life was cut short in 1906 when he was killed in a street accident at the age of 46
Pierre Curie’s dedication to scientific rigor and his ability to work collaboratively with Marie, his wife and fellow scientist, was vital to their success. Their work would not only earn them the Nobel Prize but also set the stage for later advancements in nuclear physics and medicine.
Tragic Loss and Enduring Legacy
Tragically, Pierre Curie’s life was cut short in 1906 when he was killed in a street accident at the age of 46. His death was a blow to both the scientific community and his family. However, his legacy continued through his wife, Marie, who carried on their groundbreaking work and became the first woman to win a second Nobel Prize.
Today, Pierre Curie is remembered as a visionary physicist whose discoveries were instrumental in shaping the fields of physics, chemistry, and medicine. His contributions to magnetism, crystallography, and radioactivity remain foundational to scientific inquiry. His work continues to inspire scientists across disciplines and serves as a reminder of the power of precision, collaboration, and dedication in the pursuit of knowledge.
Know The Scientist
The ‘Godfather of AI’ has a warning for us
The speed with which large language models such as ChatGPT has come to the fore has re-invigorated serious discussion about AI ethics and safety among scientists and humanities scholars alike.

The quest to develop artificial intelligence (AI) in the 20th century had entrants coming in from various fields, mostly mathematicians and physicists.
Geoff Hinton, famously known as the ‘godfather of AI’ today, at one point dabbled in cognitive psychology as a young undergraduate student at Cambridge. Allured by the nascent field of AI in the 1970s, Hinton did a PhD from Edinburgh where he helped revive the idea of artificial neural networks (ANNs). These ANNs mimic neuronal connections in animal brains, and has been the staple of mainstream research into AI. Hinton, a British-born Canadian, since then moved to the University of Toronto, where he’s currently a professor in computer science.
In 2018, Hinton’s contributions to computer science and AI caught up to him. He was awarded a share of the coveted Turing Award, which is popularly known as the ‘Nobel Prize in Computing’. His 1986 work on ‘back propagation’ helped provide the blueprint to how machines learn, earning him the popular recognition of being one of the ‘fathers of deep learning’ as well.
The last two years saw artificial intelligence become commonplace in public discourse on technology. Leading the charge was OpenAI’s ChatGPT, as large language models (LLMs) found use in a whole host of settings across the globe. OpenAI, Google, Microsoft and their likes are engaged in upping the ante.
But this sudden spurt has alarmed many and is re-invigorating a serious discussion about AI ethics and safety. Last year, Elon Musk was amongst signatories of a letter requesting to halt AI research for a while, fearing the ever-increasing odds that sentient AI may be in the horizon. But sociologists believe this risk is simply overplayed by billionaires to avoid the real-world problems posed by AI gets swept under the carpet. For example, job losses will occur for which there is no solution in sight about what should be done to compensate those who may lose their work.
However, in a very technical sense, computer scientists like Hinton have taken to the fore to make their views explicitly clear. In fact, Hinton ended his decade long association with Google last year to speak freely about what he thought was a competition between technology companies to climb upon each other’s advances. He, like many computer scientists, believe humanity is at a ‘turning point’ with AI, especially with large language models (LLMs) like ChatGPT at the fore.
“It’s [LLMs] very exciting,” said Hinton in a Science article. “It’s very nice to see all this work coming to fruition. But it’s also scary.”
One research study suggests these LLMs are anything but ‘stochastic parrots’ that outputs what it’s been instructed to do. This doesn’t mean AI is anywhere close to being sentient today. However, Hinton and other computer scientists fear humanity may unwittingly run into the real risk of creating one. In fact, Hinton was one of several signatories of an open letter requesting policy makers to consider the existential risk of AI.
Creating a sentient AI, or artificial general intelligence (AGI, as it’s technically called) would vary in definition based on scientists researching them. They don’t exist for one today, and nobody safe to say knows what it would look like. But in popular lore, these can simply mean Skynet from the Terminator movies, becoming ‘self-aware’. Hinton was of the opinion that AI already surpassed biological intelligence in some ways. However, it must be bore in mind that AI isn’t anymore a stochastic parrot than it is sentient. Hinton doesn’t say more powerful AI would make humans all redundant. But AI could do many routine tasks humans already do, and thus replace them in those in time. Navigating them is a task that requires views that are transdisciplinary.
-
EDUNEWS & VIEWS5 months ago
India: Big Science in the 20th century and beyond
-
Interviews5 months ago
Memory Formation Unveiled: An Interview with Sajikumar Sreedharan
-
Space & Physics6 months ago
Nobel laureates in Physics recognized for contributions to Machine Learning
-
Society5 months ago
Global tech alliance: Nvidia partners with Reliance to transform AI landscape in India
-
Space & Physics6 months ago
Pioneers of modern Artificial Intelligence
-
The Sciences6 months ago
UFS researcher tackles plastic pollution with innovative biodegradable polymers
-
The Sciences5 months ago
Prof Saleem Badat awarded ASSAf Science-for-Society Gold Medal
-
Earth5 months ago
The wildfires, floods, and heatwaves: Understanding the science behind climate change