Connect with us

Space & Physics

MIT Physicists Capture First-Ever Images of Freely Interacting Atoms in Space

The new technique allows scientists to visualize real-time quantum behavior by momentarily freezing atoms in motion and illuminating them with precisely tuned lasers

Published

on

Image: Sampson Wilcox

In an intriguing advancement for quantum physics, MIT researchers have captured the first images of individual atoms freely interacting in space — a feat that until now was only predicted theoretically.

The new imaging technique, developed by a team led by Professor Martin Zwierlein, allows scientists to visualize real-time quantum behavior by momentarily freezing atoms in motion and illuminating them with precisely tuned lasers. Their results, published in Physical Review Letters, reveal how bosons bunch together and fermions pair up in free space — phenomena crucial to understanding superconductivity and other quantum states of matter.

“We are able to see single atoms in these interesting clouds of atoms and what they are doing in relation to each other, which is beautiful,” said Zwierlein in a press statement.

Using their method — called “atom-resolved microscopy” — the team was able to trap atom clouds with a loose laser, briefly immobilize them with a lattice of light, and then image their positions via fluorescence. This approach allowed the researchers to observe quantum behaviors at the level of individual atoms for the first time.

The MIT group directly visualized sodium atoms (bosons) bunching together in a shared quantum wave — a vivid confirmation of the de Broglie wave theory — and lithium atoms (fermions) pairing up despite their natural repulsion, a key mechanism underlying superconductivity.

“This kind of pairing is the basis of a mathematical construction people came up with to explain experiments. But when you see pictures like these, it’s showing in a photograph, an object that was discovered in the mathematical world,” said co-author Richard Fletcher in a press statement.

Two other research teams — one led by Nobel laureate Wolfgang Ketterle at MIT, and another by Tarik Yefsah at École Normale Supérieure — also reported similar quantum imaging breakthroughs in the same journal issue, marking a significant moment in the experimental visualization of quantum mechanics.

The MIT team plans to expand the technique to probe more exotic quantum behaviors, including quantum Hall states. “Now we can verify whether these cartoons of quantum Hall states are actually real,” Zwierlein added. “Because they are pretty bizarre states.”

Space & Physics

Indian Researchers Develop Breakthrough Metal-Free Catalyst for Green Hydrogen Production

Published

on

Image credit: Pixabay

In a major scientific breakthrough, researchers at Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bengaluru, India, have developed a novel, cost-effective, metal-free porous organic catalyst that enables efficient hydrogen (H₂) production by harnessing mechanical energy. This innovative work could provide a significant boost to India’s National Green Hydrogen Mission and global efforts toward clean energy.

The team, led by Professor Tapas K. Maji from the Chemistry and Physics of Materials Unit at JNCASR—an autonomous institution under the Department of Science & Technology, Government of India—has designed a donor-acceptor-based covalent-organic framework (COF) that functions as a highly efficient piezocatalyst for water splitting. The findings have been published in the journal Advanced Functional Materials.

Figure: Schematic showing piezocatalytic water splitting by a metal-free donor-acceptor based covalent organic framework. Credit: PIB

“This discovery breaks the traditional notion of solely employing heavy or transition metal-based ferroelectric materials as piezocatalysts for catalyzing water splitting reaction,” said Professor Maji in a press statement.

The COF, constructed using the donor molecule tris(4-aminophenyl)amine (TAPA) and the acceptor molecule pyromellitic dianhydride (PDA), showcases unique ferrielectric (FiE) ordering. Unlike conventional ferroelectric materials, which have limited surface charge and rapidly reach saturation, this FiE structure dramatically enhances the number of charge carriers within the framework’s porous surface. This enables more effective diffusion and interaction of water molecules, resulting in ultra-high hydrogen production yields.

Prof. Umesh V. Waghmare and his team, also at JNCASR, conducted theoretical analyses confirming that the COF’s unusual electronic structure fosters dipolar ordering, leading to lattice instability and FiE behavior. “These FiE dipoles interact with the flexible twisting molecular motion in the material, making them responsive to mechanical pressure,” said Prof. Waghmare. “As a result, the material can generate electron-hole pairs when mechanically stimulated, making it a highly efficient piezocatalyst.”

The research team also includes Ms. Adrija Ghosh, Ms. Surabhi Menon, Dr. Sandip Biswas, and Dr. Anupam Dey from JNCASR, with significant contributions from Dr. Supriya Sahoo and Prof. Ramamoorthy Boomishankar at IISER Pune, and Prof. Jan K. Zaręba from Wrocław University of Science and Technology, Poland.

The innovation offers a promising alternative to traditional oxide-based piezocatalysts and represents a leap forward in the sustainable production of hydrogen fuel. “The utilization of a cost-effective, metal-free system with a high production rate of H2 by harvesting mechanical energy opens up a new route to green H2 based on porous heterogeneous catalysts,” added Prof. Maji.

Continue Reading

Space & Physics

Engineers Edge Closer to Practical, Fault-Tolerant Quantum Machines

The findings demonstrate the foundational physics needed to achieve ultra-fast quantum readout, an essential step toward scalable and fault-tolerant quantum systems

Published

on

Image credit: Gerd Altmann from Pixabay

In a breakthrough that could accelerate the future of quantum computing, researchers at MIT have demonstrated the strongest nonlinear light-matter coupling ever recorded in a quantum system — a development that may enable quantum operations and measurements in mere nanoseconds.

This leap forward hinges on a novel superconducting circuit design featuring a device called the quarton coupler, invented by lead researcher Yufeng “Bright” Ye, PhD ’24. The technology enables interaction between photons (particles of light that carry quantum information) and artificial atoms (units that store quantum data), which is central to the speed and accuracy of quantum computers.

“Usually, you have to measure results between rounds of error correction, and slow readout can become a bottleneck,” Ye explained. “This could dramatically accelerate progress toward fault-tolerant quantum computing and practical real-world applications.”

Working with senior author Kevin O’Brien, associate professor and principal investigator at MIT’s Research Laboratory of Electronics, the team connected the quarton coupler to two superconducting qubits on a chip. One served as a photon emitter and the other as a storage atom, enabling extremely strong nonlinear interactions — about ten times stronger than previous demonstrations.

This means a quantum processor could potentially perform tenfold faster operations, allowing scientists to run more quantum error corrections during the brief window when qubits remain coherent. Error correction is essential in quantum computing, where fragile quantum states are easily disrupted.

The team’s findings, published in Nature Communications, demonstrate the foundational physics needed to achieve ultra-fast quantum readout, an essential step toward scalable and fault-tolerant quantum systems.

While this remains a proof of concept, researchers are now working to integrate additional electronic components — such as filters — to build practical readout circuits compatible with full-scale quantum systems. The team also reported success in achieving strong matter-matter coupling between qubits, which could further enhance future quantum operations.

“This isn’t the end — it’s the beginning of a new phase,” said O’Brien. “We now have a powerful physical tool, and the next step is engineering it into something that can be part of a real quantum computer.”

As scientists push toward building large-scale quantum processors, innovations like the quarton coupler bring them closer to unlocking new materials, revolutionizing machine learning, and solving problems beyond the reach of today’s fastest supercomputers.

Continue Reading

Space & Physics

Indian Scientists Crack the Code to Measure Sun’s Elusive Helium Content

New technique offers breakthrough in understanding solar photosphere’s opacity

Published

on

Illustrated image. For representative purpose

In a significant development, researchers from the Indian Institute of Astrophysics (IIA) have, for the first time, accurately estimated the abundance of Helium in the Sun’s photosphere—its visible surface. This development marks a major advancement in understanding the Sun’s opacity and internal structure.

Until now, determining the amount of Helium in the Sun’s photosphere had remained a challenge due to the absence of distinct Helium spectral lines. Scientists typically relied on indirect methods, such as extrapolations from hotter stars, measurements from the Sun’s outer layers (like the corona and solar wind), or helioseismic data. However, none of these approaches involved direct observation of the photosphere.

The new study, published in the Astrophysical Journal, was carried out by Satyajeet Moharana, B.P. Hema, and Gajendra Pandey. The team applied a unique technique using high-resolution solar spectra to overcome this long-standing challenge.

“Using a novel and consistent technique, whereby the spectral lines of neutral Magnesium and Carbon atoms in conjunction with the lines from the Hydrogenated molecules of these two elements are carefully modelled, we are able to constrain the relative abundance of Helium in the Sun’s photosphere now,” said lead author Satyajeet Moharana, currently a PhD scholar at KASI, South Korea, in a media statement.

The method is based on the principle that the abundance of Helium affects the availability of Hydrogen, which in turn impacts the formation of molecular lines with Magnesium and Carbon. By analyzing the spectral signatures of both atomic and molecular forms of these elements, the researchers were able to deduce the relative abundance of Helium.

“We analysed the lines of neutral Magnesium and the subordinate lines of MgH molecule, and the neutral Carbon and the subordinate lines of CH and C₂ molecules, from the photospheric spectrum of the Sun,” explained B.P. Hema. “The abundance of Magnesium derived from its neutral atomic line must necessarily agree with the abundance derived from its hydrogenated molecular line,” she said, adding that the same logic applies to Carbon.

Gajendra Pandey noted, “In our analysis, we calculated the expected abundance of Mg and C for various values of the relative abundance of Helium to Hydrogen, from the atomic and molecular lines.” The team found that a Helium-to-Hydrogen ratio of 0.1 best matched their observed data—a result in line with long-standing theoretical assumptions and helioseismological studies.

“Our derived He/H ratios are in fair agreement with the results obtained through various helioseismological studies, signifying the reliability and accuracy of our novel technique in determining the solar helium-to-hydrogen ratio,” Hema added.

This pioneering work not only provides clarity on the Sun’s composition but also opens new avenues for accurately studying other Sun-like stars using a similar method.

Continue Reading

Trending