Connect with us

Space & Physics

Indian Scientists Crack the Code to Measure Sun’s Elusive Helium Content

New technique offers breakthrough in understanding solar photosphere’s opacity

Published

on

Illustrated image. For representative purpose

In a significant development, researchers from the Indian Institute of Astrophysics (IIA) have, for the first time, accurately estimated the abundance of Helium in the Sun’s photosphere—its visible surface. This development marks a major advancement in understanding the Sun’s opacity and internal structure.

Until now, determining the amount of Helium in the Sun’s photosphere had remained a challenge due to the absence of distinct Helium spectral lines. Scientists typically relied on indirect methods, such as extrapolations from hotter stars, measurements from the Sun’s outer layers (like the corona and solar wind), or helioseismic data. However, none of these approaches involved direct observation of the photosphere.

The new study, published in the Astrophysical Journal, was carried out by Satyajeet Moharana, B.P. Hema, and Gajendra Pandey. The team applied a unique technique using high-resolution solar spectra to overcome this long-standing challenge.

“Using a novel and consistent technique, whereby the spectral lines of neutral Magnesium and Carbon atoms in conjunction with the lines from the Hydrogenated molecules of these two elements are carefully modelled, we are able to constrain the relative abundance of Helium in the Sun’s photosphere now,” said lead author Satyajeet Moharana, currently a PhD scholar at KASI, South Korea, in a media statement.

The method is based on the principle that the abundance of Helium affects the availability of Hydrogen, which in turn impacts the formation of molecular lines with Magnesium and Carbon. By analyzing the spectral signatures of both atomic and molecular forms of these elements, the researchers were able to deduce the relative abundance of Helium.

“We analysed the lines of neutral Magnesium and the subordinate lines of MgH molecule, and the neutral Carbon and the subordinate lines of CH and C₂ molecules, from the photospheric spectrum of the Sun,” explained B.P. Hema. “The abundance of Magnesium derived from its neutral atomic line must necessarily agree with the abundance derived from its hydrogenated molecular line,” she said, adding that the same logic applies to Carbon.

Gajendra Pandey noted, “In our analysis, we calculated the expected abundance of Mg and C for various values of the relative abundance of Helium to Hydrogen, from the atomic and molecular lines.” The team found that a Helium-to-Hydrogen ratio of 0.1 best matched their observed data—a result in line with long-standing theoretical assumptions and helioseismological studies.

“Our derived He/H ratios are in fair agreement with the results obtained through various helioseismological studies, signifying the reliability and accuracy of our novel technique in determining the solar helium-to-hydrogen ratio,” Hema added.

This pioneering work not only provides clarity on the Sun’s composition but also opens new avenues for accurately studying other Sun-like stars using a similar method.

Health

Ultrathin Heat-Sensing Film Could Revolutionize Night Vision and Wearable Tech

This breakthrough could pave the way for a new era of ultra-light, compact, and highly sensitive electronic devices, ranging from wearable sensors and flexible computing components to cutting-edge night vision systems

Published

on

In a leap forward for next-generation electronics, engineers at MIT have developed an innovative method to create and peel ultrathin layers of electronic material—akin to flexible, electronic “skins.” This breakthrough could pave the way for a new era of ultra-light, compact, and highly sensitive electronic devices, ranging from wearable sensors and flexible computing components to cutting-edge night vision systems.

As a proof of concept, the MIT team produced a 10-nanometer-thick membrane made from a heat-sensitive material known as pyroelectric film. This ultrathin film is capable of detecting minute changes in temperature and radiation across the far-infrared spectrum—an essential feature for high-performance thermal imaging.

“Reducing both the weight and cost, this film opens the door to lightweight, portable infrared sensors that could even be integrated into eyewear,” said Xinyuan Zhang, graduate student in MIT’s Department of Materials Science and Engineering and the study’s lead author.

Unlike conventional far-infrared sensors that rely on bulky, power-hungry cooling systems to function, MIT’s new film operates efficiently at room temperature. This allows for more compact designs that could transform current technologies, including night-vision goggles, which are often heavy and cumbersome.

The secret to this innovation lies in a surprising discovery: a certain heat-sensitive compound, PMN-PT, could be cleanly separated from its substrate without the need for an intermediate layer. Researchers found that lead atoms within the film acted like microscopic “nonstick” agents, allowing the membrane to lift away seamlessly and remain atomically smooth.

The team, in collaboration with researchers from the University of Wisconsin at Madison and other institutions, used this property to fabricate arrays of ultrathin heat-sensing pixels. These sensors exhibited sensitivity comparable to top-tier night-vision systems—without requiring cryogenic cooling—and showed potential for full-spectrum infrared detection.

“This technology could extend beyond defense and security,” said Zhang. “Its potential uses include autonomous driving in low-visibility conditions, real-time environmental monitoring, and even detecting overheating in semiconductor chips.”

The researchers are now working to integrate the films into practical devices, including lightweight, high-resolution night-vision glasses. They also believe their peeling technique could be applied to other types of ultrathin semiconductors, even those lacking lead, by engineering substrates to replicate the same peel-off effect.

The findings were published in Nature and include contributions from a broad team across MIT, the University of Wisconsin at Madison, Rensselaer Polytechnic Institute, and several other institutions.

Continue Reading

Space & Physics

Astronomers Discover a “Dying” Planet That’s Literally Falling Apart

A distant exoplanet, some 140 light-years from Earth, is making its final stand—and it’s a spectacular, fiery exit.

Published

on

Credits :Image: Jose-Luis Olivares, MIT

Astronomers at MIT have uncovered a small, rocky world that is disintegrating before our very eyes. The planet, known as BD+05 4868 Ab, is orbiting its host star so closely—about 20 times closer than Mercury is to the Sun—that its surface is likely a sea of molten rock. The extreme heat, estimated at 1,600°C (nearly 3,000°F), is causing the planet to shed vast amounts of its outer layers into space.

Using data from NASA’s Transiting Exoplanet Survey Satellite (TESS), the MIT-led team spotted the planet through a telltale dip in starlight. But unlike the predictable shadows caused by typical planets passing in front of their stars, this signal had something else—a long, changing shadow, hinting at a trail of debris.

“The extent of the tail is gargantuan, stretching up to 9 million kilometers long, or roughly half of the planet’s entire orbit,” said Marc Hon, postdoctoral researcher at MIT’s Kavli Institute for Astrophysics and Space Research, in a media statement.

What they found was essentially a rocky comet—except this isn’t a frozen body from the outer solar system. This is a terrestrial planet in a death spiral. According to the team, BD+05 4868 Ab is losing material at a rate comparable to one Mount Everest per orbit. At this pace, the planet could vanish entirely within the next one to two million years.

“We got lucky with catching it exactly when it’s really going away,” said Avi Shporer, a collaborator from the TESS Science Office. “It’s like on its last breath.”

The signal from the planet stood out during routine data analysis. Hon recalls stumbling on the strange pattern by chance: “We weren’t looking for this kind of planet. We were doing the typical planet vetting, and I happened to spot this signal that appeared very unusual.”

That “unusual” signal—fluctuating dips in brightness that lingered longer than expected—suggested not a single compact body, but something more complex. A dusty, mineral-rich trail stretching out like a comet’s tail.

“The shape of the transit is typical of a comet with a long tail,” Hon noted. “Except that it’s unlikely that this tail contains volatile gases and ice as expected from a real comet—these would not survive long at such close proximity to the host star.”

What’s left instead is a dust plume made of vaporized rock—an astonishing sight for astronomers, and a rare one too. Out of nearly 6,000 confirmed exoplanets, only three others like this have ever been found—and all over a decade ago using the Kepler Space Telescope.

“This is a very tiny object, with very weak gravity, so it easily loses a lot of mass, which then further weakens its gravity, so it loses even more mass,” said Shporer. “It’s a runaway process, and it’s only getting worse and worse for the planet.”

Of the known disintegrating worlds, BD+05 4868 Ab is by far the most dramatic. Its host star is also brighter and closer than those of its doomed cousins, making it an ideal target for follow-up observations with NASA’s James Webb Space Telescope (JWST).

“This will be a unique opportunity to directly measure the interior composition of a rocky planet,” Hon said, “which may tell us a lot about the diversity and potential habitability of terrestrial planets outside our solar system.”

With JWST observations set to begin this summer, Hon and his colleagues hope to uncover what elements make up the dusty trail—effectively peering into the planet’s interior as it crumbles into space.

As they continue to scan the skies, the team is keeping a keen eye out for more cosmic casualties like BD+05 4868 Ab.

“Sometimes with the food comes the appetite,” Shporer said. “And we are now trying to initiate the search for exactly these kinds of objects.”

Continue Reading

Know The Scientist

Dr. Nikku Madhusudhan Brings Us Closer to Finding Life Beyond Earth

Dr. Madhusudhan, a leading Indian-British astrophysicist at the University of Cambridge, has long been on the frontlines of the search for extraterrestrial life

Published

on

Somewhere in the vast, cold dark of the cosmos, a planet orbits a distant star. It’s not a place you’d expect to find life—but if Dr. Nikku Madhusudhan is right, that assumption may soon be history.

Dr. Madhusudhan, a leading Indian-British astrophysicist at the University of Cambridge, has long been on the frontlines of the search for extraterrestrial life or what we call the alien life. This month, his team made headlines around the world after revealing what could be the strongest evidence yet of life beyond Earth—on a distant exoplanet known as K2-18b.

Using data from NASA’s James Webb Space Telescope, Madhusudhan and his collaborators detected atmospheric signatures of molecules commonly associated with biological processes on Earth—specifically, gases produced by marine phytoplankton and certain bacteria. Their analysis suggests a staggering 99.7% probability that these molecules could be linked to living organisms.

“This marked the first detection of carbon-bearing molecules in the atmosphere of an exoplanet located within the habitable zone,” the University of Cambridge said in a press statement. “The findings align with theoretical models of a ‘Hycean’ planet — a potentially habitable, ocean-covered world enveloped by a hydrogen-rich atmosphere.”

Born in India, Dr. Madhusudhan began his journey in science with an engineering degree from IIT (BHU) Varanasi

In addition, a fainter signal suggested there could be other unexplained processes occurring on K2-18b. “We didn’t know for sure whether the signal we saw last time was due to DMS, but just the hint of it was exciting enough for us to have another look with JWST using a different instrument,” said Professor Nikku Madhusudhan in a news report released by the University of Cambridge.

The man behind the mission

Born in India, Dr. Madhusudhan began his journey in science with an engineering degree from IIT (BHU) Varanasi. But it was during his time at the Massachusetts Institute of Technology (MIT), under the mentorship of exoplanet pioneer Prof. Sara Seager, that he found his calling. His doctoral work—developing methods to retrieve data from exoplanet atmospheres—would go on to form the backbone of much of today’s planetary climate modeling.

Now a professor at the University of Cambridge’s Institute of Astronomy, Madhusudhan leads research that straddles the line between science fiction and frontier science.

A Universe of Firsts

Over the years, his work has broken new ground in our understanding of alien worlds. He was among the first to suggest the concept of “Hycean planets”—oceans of liquid water beneath hydrogen-rich atmospheres, conditions which may be ideal for life. He also led the detection of titanium oxide in the atmosphere of WASP-19b and pioneered studies of K2-18b, the same exoplanet now back in the spotlight.

His team’s recent findings on K2-18b may be the closest humanity has ever come to detecting life elsewhere in the universe.

Accolades and impact

Madhusudhan’s contributions have earned him global recognition. He received the prestigious IUPAP Young Scientist Medal in 2016 and the MERAC Prize in Theoretical Astrophysics in 2019. In 2014, the Astronomical Society of India awarded him the Vainu Bappu Gold Medal for outstanding contributions to astrophysics by a scientist under 35.

But for Madhusudhan, the real reward lies in the questions that remain unanswered.

Looking ahead

Madhusudhan cautions that, while the findings are promising, more data is needed before drawing conclusions about the presence of life on another planet. He remains cautiously optimistic but notes that the observations on K2-18b could also be explained by previously unknown chemical processes. Together with his colleagues, he plans to pursue further theoretical and experimental studies to investigate whether compounds like DMS and DMDS could be produced through non-biological means at the levels currently detected.

Beyond the lab, Madhusudhan remains dedicated to mentoring students and advancing scientific outreach. He’s a firm believer that the next big discovery might come from a student inspired by the stars, just as he once was.

As scientists prepare for the next wave of data and the world watches closely, one thing is clear: thanks to minds like Dr. Nikku Madhusudhan’s, the search for life beyond Earth is no longer a distant dream—it’s a scientific reality within reach.

Continue Reading

Trending