Connect with us

Space & Physics

Scientists Use Light to Direct Movement in Starfish Egg Cells

By genetically engineering a light-sensitive version of this enzyme, the researchers were able to use light to direct the cell’s motion in precise patterns

Published

on

The study’s senior author, Nikta Fakhri, associate professor of physics at MIT. Credits:Photo: Adam Glanzman

The ability to control the behaviour of individual cells has long been a goal of scientists studying cell development. MIT researchers have now developed a method to manipulate how a single cell moves and changes shape, using light. This breakthrough, which could have far-reaching applications in synthetic biology and medicine, was demonstrated in egg cells from starfish—a common model for understanding cell behaviour during development.

The team, led by Nikta Fakhri, focused on an enzyme within the starfish egg cell that triggers a cascade of movements. By genetically engineering a light-sensitive version of this enzyme, the researchers were able to use light to direct the cell’s motion in precise patterns.

“We found that the light successfully triggered the enzyme, which in turn prompted the cells to jiggle and move in predictable patterns,” says Fakhri, an associate professor of physics at MIT. “For instance, we could stimulate cells to exhibit small pinches or sweeping contractions, depending on the pattern of light we induced. We could even shine light at specific points around a cell to stretch its shape from a circle to a square.”

The findings, set to be published in Nature Physics, open up exciting possibilities for future medical and synthetic cell applications. The researchers envision using this technology to design cells that could respond to light for therapeutic purposes, such as “patch” cells that contract to help close wounds or drug-delivering cells that release medication only when illuminated at specific locations in the body.

Fakhri continues, “By revealing how a light-activated switch can reshape cells in real time, we’re uncovering basic design principles for how living systems self-organize and evolve shape.”

The research team includes MIT’s Jinghui Liu, Yu-Chen Chao, and Tzer Han Tan, alongside collaborators from Ludwig Maximilian University of Munich, Saarland University, and the Whitehead Institute for Biomedical Research.

Exploring the Starfish Model

Fakhri’s group specializes in understanding the physical dynamics that drive cell growth, especially the role of symmetry in cell development. The starfish, known for its distinct stages of symmetry, is an ideal organism for studying the signalling processes that guide cell organization.

“A starfish is fascinating because it starts with a symmetrical cell and eventually develops into an adult with pentameral symmetry,” Fakhri explains. “There are many signalling events along the way that direct how the cell organizes itself into more complex structures.”

The team’s earlier research identified a key “circuitry” in the starfish egg cell that regulates its movement and shape. This circuitry involves an enzyme called GEF, which, when activated, triggers a protein called Rho. Rho plays a crucial role in regulating cell mechanics by binding to the cell’s membrane and initiating the formation of muscle-like fibres that enable the cell to contract and move.

Harnessing Light to Control Cell Movement

In this new study, the team turned to optogenetics, a technique that uses light to control genetically engineered cellular components. They created a light-sensitive version of the GEF enzyme and injected it into egg cells harvested from starfish. The cells, now capable of producing the light-sensitive enzyme, were placed under a microscope, and the researchers applied light in different patterns to observe how the cells responded.

By targeting specific areas of the cell with light, they were able to activate the enzyme, triggering the Rho protein to form fibers and cause the cell to move. This allowed the team to control the cell’s shape, even morphing it from a circle into a square. Additionally, they discovered that shining light in a single spot could initiate sweeping contractions within the cell, providing even more precise control over its behaviour.

“We realized this Rho-GEF circuitry is an excitable system, where a small, well-timed stimulus can trigger a large, all-or-nothing response,” Fakhri says. “By illuminating either the entire cell or just a small region, we can control how the cell responds and causes contraction or pinching.”

The researchers also developed a theoretical framework to predict how cells would change in response to light stimuli. This new understanding of cellular “excitability” could have important implications for fields like developmental biology, wound healing, and synthetic biology.

Future Applications in Synthetic Biology

“This work provides a blueprint for designing programmable synthetic cells,” Fakhri explains. “By controlling cell shape in real time, we can potentially design cells that perform specific tasks in the body when activated by light. This could lead to new biomedical applications, from targeted drug delivery to tissue repair.”

The ability to control cell behaviour with light opens up exciting possibilities for future research and applications, offering a new way to explore how cells shape themselves during development and how we might harness these processes for therapeutic use.

Space & Physics

Researchers Uncover New Way to Measure Hidden Quantum Interactions in Materials

Published

on

Image credit: Pixabay

A team of MIT scientists has developed a theory-guided strategy to directly measure an elusive quantum property in semiconductors — the electron-phonon interaction — using an often-ignored effect in neutron scattering.

Their approach, published this week in Materials Today Physics, reinterprets an interference effect, typically considered a nuisance in experiments, as a valuable signal. This enables researchers to probe electron-phonon interactions — a key factor influencing a material’s thermal, electrical, and optical behaviour — which until now have been extremely difficult to measure directly.

“Rather than discovering new spectroscopy techniques by pure accident, we can use theory to justify and inform the design of our experiments and our physical equipment,” said Mingda Li, senior author and associate professor at MIT, in a media statement.

By engineering the interference between nuclear and magnetic interactions during neutron scattering, the team demonstrated that the resulting signal is directly proportional to the electron-phonon coupling strength.

“Being able to directly measure the electron-phonon interaction opens the door to many new possibilities,” said MIT graduate student Artittaya Boonkird.

While the current setup produced a weak signal, the findings lay the groundwork for next-generation experiments at more powerful facilities like Oak Ridge National Laboratory’s proposed Second Target Station. The team sees this as a shift in materials science — using theoretical insights to unlock previously “invisible” properties for a range of advanced technologies, from quantum computing to medical devices.

Continue Reading

Space & Physics

Dormant Black Holes Revealed in Dusty Galaxies Through Star-Shredding Events

Published

on

Image credit: NRAO/AUI/NSF/NASA

In a major discovery, astronomers at MIT, Columbia University, and other institutions have used NASA’s James Webb Space Telescope (JWST) to uncover hidden black holes in dusty galaxies that violently “wake up” only when an unsuspecting star wanders too close.

The new study, published in Astrophysical Journal Letters, marks the first time JWST has captured clear signatures of tidal disruption events (TDEs) — catastrophic episodes where a star is torn apart by a galaxy’s central black hole, emitting a dramatic burst of energy.

“These are the first JWST observations of tidal disruption events, and they look nothing like what we’ve ever seen before,” said lead author Megan Masterson, a graduate student at MIT’s Kavli Institute for Astrophysics and Space Research. “We’ve learned these are indeed powered by black hole accretion, and they don’t look like environments around normal active black holes.”

Until now, nearly all TDEs detected since the 1990s were found in relatively dust-free galaxies using X-ray or optical telescopes. However, researchers suspected many more events remained hidden behind thick clouds of galactic dust. JWST’s powerful infrared vision has finally confirmed their hunch.

By analyzing four galaxies previously flagged as likely TDE candidates, the team detected distinct infrared fingerprints of black hole accretion — the process of material spiraling into a black hole, producing intense radiation. These signatures, invisible to optical telescopes, revealed that all four events stemmed not from persistently active black holes but dormant ones, roused only when a passing star came too close.

“There’s nothing else in the universe that can excite this gas to these energies, except for black hole accretion,” Masterson noted.

Among the four signals studied was the closest TDE ever detected, located 130 million light-years away. Another showed an initial optical flash that scientists had earlier suspected to be a supernova. JWST’s readings helped clarify the true cause.

“These four signals were as close as we could get to a sure thing,” said Masterson. “But the JWST data helped us say definitively these are bonafide TDEs.”

To determine whether the central black holes were inherently active or momentarily triggered by a star’s disruption, the team also mapped the dust patterns around them. Unlike the thick, donut-shaped clouds typical of active galaxies, these dusty environments appeared markedly different — further confirming the black holes were usually dormant.

“Together, these observations say the only thing these flares could be are TDEs,” Masterson said in a media statement.

The findings not only validate JWST’s unprecedented ability to study hidden cosmic phenomena but also open new pathways for understanding black holes that lurk quietly in dusty galactic centers — until they strike.

With future observations planned using JWST, NEOWISE, and other infrared tools, the team hopes to catalog many more such events. These cosmic feeding frenzies, they say, could unlock key clues about black hole mass, spin, and the very nature of their environments.

“The actual process of a black hole gobbling down all that stellar material takes a long time,” Masterson added. “And hopefully we can start to probe how long that process takes and what that environment looks like. No one knows because we just started discovering and studying these events.”

Continue Reading

Space & Physics

MIT unveils an ultra-efficient 5G receiver that may supercharge future smart devices

A key innovation lies in the chip’s clever use of a phenomenon called the Miller effect, which allows small capacitors to perform like larger ones

Published

on

Image credit: Mohamed Hassan from Pixabay

A team of MIT researchers has developed a groundbreaking wireless receiver that could transform the future of Internet of Things (IoT) devices by dramatically improving energy efficiency and resilience to signal interference.

Designed for use in compact, battery-powered smart gadgets—like health monitors, environmental sensors, and industrial trackers—the new chip consumes less than a milliwatt of power and is roughly 30 times more resistant to certain types of interference than conventional receivers.

“This receiver could help expand the capabilities of IoT gadgets,” said Soroush Araei, an electrical engineering graduate student at MIT and lead author of the study, in a media statement. “Devices could become smaller, last longer on a battery, and work more reliably in crowded wireless environments like factory floors or smart cities.”

The chip, recently unveiled at the IEEE Radio Frequency Integrated Circuits Symposium, stands out for its novel use of passive filtering and ultra-small capacitors controlled by tiny switches. These switches require far less power than those typically found in existing IoT receivers.

A key innovation lies in the chip’s clever use of a phenomenon called the Miller effect, which allows small capacitors to perform like larger ones. This means the receiver achieves necessary filtering without relying on bulky components, keeping the circuit size under 0.05 square millimeters.

Credit: Courtesy of the researchers/MIT News

Traditional IoT receivers rely on fixed-frequency filters to block interference, but next-generation 5G-compatible devices need to operate across wider frequency ranges. The MIT design meets this demand using an innovative on-chip switch-capacitor network that blocks unwanted harmonic interference early in the signal chain—before it gets amplified and digitized.

Another critical breakthrough is a technique called bootstrap clocking, which ensures the miniature switches operate correctly even at a low power supply of just 0.6 volts. This helps maintain reliability without adding complex circuitry or draining battery life.

The chip’s minimalist design—using fewer and smaller components—also reduces signal leakage and manufacturing costs, making it well-suited for mass production.

Looking ahead, the MIT team is exploring ways to run the receiver without any dedicated power source—possibly by harvesting ambient energy from nearby Wi-Fi or Bluetooth signals.

The research was conducted by Araei alongside Mohammad Barzgari, Haibo Yang, and senior author Professor Negar Reiskarimian of MIT’s Microsystems Technology Laboratories.

Continue Reading

Trending