Connect with us

Space & Physics

How Shyam Gollakota is revolutionizing mobile systems and healthcare with technology

His research is already opening up new possibilities for battery-free networks, including underwater Wi-Fi, powerline communication, and even wireless cameras

Published

on

Shyam Gollakota. Image credit: By special arrangements

Prof. Shyam Gollakota, Washington Research Foundation and Thomas J. Cable Endowed Professor at the Paul G. Allen School of Computer Science and Engineering at the University of Washington, has been honored with the Infosys Prize 2024 in Engineering and Computer Science for his groundbreaking contributions to mobile systems and healthcare. His research, which spans multiple engineering domains, has had a profound societal impact, particularly in areas like smartphone-based healthcare tools, battery-free communication, and the augmentation of human auditory perception with artificial intelligence.

Prof. Gollakota’s innovations have not only advanced the field of mobile systems but have also provided scalable, affordable solutions to some of the world’s most pressing challenges. His work is reshaping how we think about the intersection of technology and healthcare, and his pioneering research promises to improve the lives of millions globally, especially in low- and middle-income countries.

At the heart of Prof. Gollakota’s innovations is his ability to repurpose existing technologies to address real-world challenges

“His work on mobile and wireless communications is game-changing. Particularly impressive is his work on active sonar systems for physiological sensing, battery-free communications, and the use of AI to selectively tailor acoustic landscapes. These innovations will continue to benefit humanity for years to come,” stated Jury Chair, Infosys Prize 2024.

Transforming Mobile Devices into Healthcare Tools

At the heart of Prof. Gollakota’s innovations is his ability to repurpose existing technologies to address real-world challenges. One of his most remarkable contributions is his development of contactless physiological sensing using smartphones. By transforming mobile devices into active sonar systems, Gollakota’s research leverages the microphones and speakers in smartphones—components that are ubiquitous in today’s devices—to detect subtle physiological movements such as breathing.

This novel approach has significant implications for mobile health, particularly in resource-constrained areas where access to traditional medical equipment is limited. According to him, the ability to perform contactless physiological sensing with just a smartphone has the potential to revolutionize medical diagnostics, and make healthcare more accessible to billions of people around the world.

Battery-Free Communication: A Leap Forward in Sustainability

In a world increasingly concerned with energy efficiency and sustainability, Prof. Gollakota’s work on battery-free communication stands out as a pioneering achievement. He developed a technique called ambient backscatter, where wireless devices communicate by reflecting existing radio signals, rather than generating their own. This method drastically reduces energy consumption, allowing devices to communicate without the need for batteries.

This research is already opening up new possibilities for battery-free networks, including underwater Wi-Fi, powerline communication, and even wireless cameras. Battery-free devices could transform industries ranging from environmental monitoring to the Internet of Things (IoT). As per his visions, we are creating a future where energy-efficient, sustainable communication systems will be a part of our everyday lives.

Augmenting Human Auditory Perception with AI

In a truly visionary move, Prof. Gollakota’s research also explores how artificial intelligence (AI) can be used to augment human auditory perception. His work in this field enables people to program their acoustic environments, allowing them to focus on specific sounds or filter out others based on semantic descriptions. This breakthrough could have significant applications in hearing aids, earbuds, and assistive listening devices, where users can customize their listening experiences.

Battery-free devices could transform industries ranging from environmental monitoring to the Internet of Things (IoT)

By using AI to isolate and manipulate soundscapes in real time, Prof. Gollakota’s research is poised to improve quality of life for millions, offering individuals greater control over their auditory experiences. This technology will soon be commonplace in consumer electronics, giving people a level of control over their hearing that was once thought impossible.

A Thought Leader and Innovator

Prof. Shyam Gollakota’s career trajectory has been exceptional. A graduate of IIT Madras and MIT, where he received his Ph.D., Gollakota has quickly risen to prominence as a thought leader in mobile systems, machine learning, and human-computer interaction. He has received numerous accolades, including the National Science Foundation CAREER Award, the Alfred P. Sloan Fellowship, and the ACM Grace Murray Hopper Award. His recognition on MIT Technology Review’s 35 Innovators Under 35 list and twice on Forbes’ 30 Under 30 further cements his status as one of the brightest minds in his field.

As the director of the Mobile Intelligence Lab at the University of Washington, Gollakota is at the forefront of cutting-edge research in mobile health, networking, and battery-free computing. His work has already led to the creation of novel technologies that push the boundaries of what mobile systems can achieve, all with the potential to address key societal challenges.

The Future of Computing

Looking to the future, Prof. Gollakota’s research will continue to revolutionize mobile systems and human-computer interaction. His work in programmable sound, battery-free communication, and contactless diagnostics lays the foundation for the next generation of computing technologies. These innovations promise to reshape industries, improve global health, and enhance human capabilities.

With his visionary ideas and transformative research, Prof. Shyam Gollakota’s work will undoubtedly continue to have a profound impact on both the world of technology and the lives of people worldwide.

Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *

Space & Physics

This Sodium-Fuelled Clean Energy Breakthrough Could Electrify Aviation and Shipping

The innovation offers more than triple the energy density of today’s lithium-ion batteries — potentially clearing a major hurdle for electric-powered aviation, rail, and maritime travel

Published

on

An H-cell modified with electrodes and an ion-conducting ceramic membrane. Credits: Gretchen Ertl/MIT News

A new type of fuel cell developed by MIT researchers could represent a pivotal breakthrough in the race to decarbonize heavy transportation. Designed around liquid sodium metal, the innovation offers more than triple the energy density of today’s lithium-ion batteries — potentially clearing a major hurdle for electric-powered aviation, rail, and maritime travel.

Unlike traditional batteries that require time-consuming recharging, this system operates like a fuel cell that can be refueled quickly using liquid sodium — a cheap, abundant substance derived from salt. The technology, which uses air as a reactant and a solid ceramic electrolyte to facilitate the reaction, was tested in lab prototypes and demonstrated energy densities exceeding 1,500 watt-hours per kilogram — a level that could enable regional electric flight and clean shipping.

“We expect people to think that this is a totally crazy idea,” said Professor Yet-Ming Chiang, lead author and Kyocera Professor of Ceramics, in a media statement. “If they didn’t, I’d be a bit disappointed because if people don’t think something is totally crazy at first, it probably isn’t going to be that revolutionary.”

Chiang explained that current lithium-ion batteries top out at around 300 watt-hours per kilogram — far short of the 1,000 watt-hours needed for electric aircraft to become viable at scale. The new sodium-based cell meets that benchmark, which could enable 80% of domestic flights and drastically reduce aviation’s carbon footprint.

Moreover, the sodium-fueled system offers environmental benefits beyond zero emissions. Its chemical byproduct, sodium oxide, reacts spontaneously in the atmosphere to capture carbon dioxide and convert it into sodium bicarbonate — better known as baking soda — which may help counteract ocean acidification if it ends up in marine environments.

“There’s this natural cascade of reactions that happens when you start with sodium metal,” Chiang said. “It’s all spontaneous. We don’t have to do anything to make it happen, we just have to fly the airplane.”

The team has already created two functioning lab-scale prototypes: one vertical and one horizontal model. In both, sodium gradually reacts with oxygen from air to generate electricity, and a moist air stream improves the process by allowing liquid byproducts to be expelled more easily.

Karen Sugano, one of the MIT doctoral students on the project, noted, “The key was that we can form this liquid discharge product and remove it easily, as opposed to the solid discharge that would form in dry conditions,” she said in a media statement.

The researchers have founded a startup, Propel Aero, housed in MIT’s startup incubator The Engine, to scale the technology. Their first commercial goal: a brick-sized fuel cell capable of powering a large agricultural drone — expected to be ready within a year.

Chiang emphasized the economic and safety benefits of using sodium, which melts just below 100°C and was once mass-produced in the U.S. for leaded gasoline production. “It reminds us that sodium metal was once produced at large scale and safely handled and distributed around the U.S.,” he said.

Critically, the fuel cell design also avoids many safety concerns of high-energy batteries by physically separating the fuel and oxidizer. “If you’re pushing for really, really high energy density, you’d rather have a fuel cell than a battery for safety reasons,” Chiang said.

By reviving and reimagining sodium-metal chemistry in a practical, scalable form, the MIT team may have lit the path toward clean, electrified transportation systems — from the skies above to the oceans below.

Continue Reading

Space & Physics

Is Time Travel Possible? Exploring the Science Behind the Concept

Subtle forms of time travel — such as time dilation — do occur and have practical implications in science and technology.

Veena M A

Published

on

Everyone is, in a way, a time traveller. Whether we like it or not, we are constantly moving through time — one second per second. From one birthday to the next, we travel through time at a steady pace, just like walking one foot per footstep. However, when we talk about “time travel,” we often imagine something much more dramatic — traveling faster (or even backward) through time, as seen in science fiction movies and novels. But is such a thing truly possible?

From Fiction to Science

The concept of time travel first gained widespread attention through literature, particularly with H.G. Wells’ 1895 novel The Time Machine. In it, time is described as the fourth dimension, akin to space, and the protagonist travels forward and backward in time using a specially built machine. Interestingly, this idea predates Albert Einstein’s theory of relativity, which would later reshape how we understand space and time.

Image credit: Wikimedia Commons

Einstein’s Contribution: Relativity and Time Dilation

In the early 20th century, Albert Einstein introduced a revolutionary idea through his theory of relativity. He proposed that space and time are interconnected, forming a four-dimensional continuum called space-time. According to his theory, the speed of light (186,000 miles per second) is the ultimate speed limit in the universe. But how does this relate to time travel?
Einstein’s theory states that as you move faster — especially at speeds approaching the speed of light — time slows down relative to someone who is stationary. This phenomenon, known as time dilation, has been proven through various experiments. One famous example involved two synchronized atomic clocks — one placed on Earth and the other onboard a high-speed jet. When the plane returned, the onboard clock showed slightly less time had passed compared to the one on the ground. This demonstrates that, at very high speeds, time passes more slowly.

Astronaut Twins and Time

A notable example of time dilation involved twin astronauts Scott and Mark Kelly. Scott spent 520 days aboard the International Space Station, while Mark spent only 54 days in space. Due to the effects of time dilation, Scott aged slightly less than Mark — by about 5 milliseconds. Though this difference is minuscule, it is real and measurable, showing that time can indeed “bend” under certain conditions.

The GPS Example

Surprisingly, even GPS satellites experience time differently than we do on Earth. These satellites orbit at altitudes of about 20,200 kilometers and travel at speeds of roughly 14,000 km/h. Due to both their speed (special relativity) and weaker gravitational pull at high altitudes (general relativity), time ticks slightly faster for the satellites than for devices on Earth. This discrepancy is corrected using Einstein’s equations to ensure precise positioning. Without these adjustments, GPS systems could be off by several miles each day.

Science Fiction vs. Scientific Reality

Science fiction has long explored imaginative time travel — characters jumping into machines and traveling decades into the future or past. Stories often depict them altering historical events or witnessing the far future. However, there is no scientific evidence that anyone has travelled backward or forward in time in such a dramatic way.

Renowned physicist Stephen Hawking addressed this idea humorously in 2009. He hosted a party for time travellers — but only announced it afterward, reasoning that if time travel were possible, people from the future would show up. No one came. Hawking took this as a tongue-in-cheek sign that backward time travel may not be feasible.

Could Wormholes Be the Key?

Theoretical physics does suggest possibilities like wormholes — shortcuts through space-time. According to Einstein’s equations, these could, in theory, connect distant places and times. A wormhole might allow someone to enter at one point in space and exit at another, potentially in a different time. However, this remains purely speculative. The extreme gravitational forces within black holes or wormholes could destroy anything attempting to pass through.
Moreover, the idea of backward time travel introduces major paradoxes — such as the classic “grandfather paradox,” where someone goes back in time and prevents their own existence. Such contradictions challenge our understanding of causality and logic.

The Limitations of Current Science

At present, building a time machine capable of transporting people backward or forward in time by centuries remains outside the realm of scientific possibility. It’s a concept best enjoyed in novels and films for now. However, subtle forms of time travel — such as time dilation — do occur and have practical implications in science and technology.

While we may not have DeLoreans or TARDISes at our disposal, time travel — at least in small, measurable ways — is a part of our reality. The interplay of speed, gravity, and time demonstrates that our universe is far more flexible than it appears. And who knows? In some distant corner of the cosmos, nature might already be bending time in ways we are only beginning to imagine.

Until then, we’ll keep moving forward — one second per second.

Continue Reading

Space & Physics

MIT Physicists Capture First-Ever Images of Freely Interacting Atoms in Space

The new technique allows scientists to visualize real-time quantum behavior by momentarily freezing atoms in motion and illuminating them with precisely tuned lasers

Published

on

Image: Sampson Wilcox

In an intriguing advancement for quantum physics, MIT researchers have captured the first images of individual atoms freely interacting in space — a feat that until now was only predicted theoretically.

The new imaging technique, developed by a team led by Professor Martin Zwierlein, allows scientists to visualize real-time quantum behavior by momentarily freezing atoms in motion and illuminating them with precisely tuned lasers. Their results, published in Physical Review Letters, reveal how bosons bunch together and fermions pair up in free space — phenomena crucial to understanding superconductivity and other quantum states of matter.

“We are able to see single atoms in these interesting clouds of atoms and what they are doing in relation to each other, which is beautiful,” said Zwierlein in a press statement.

Using their method — called “atom-resolved microscopy” — the team was able to trap atom clouds with a loose laser, briefly immobilize them with a lattice of light, and then image their positions via fluorescence. This approach allowed the researchers to observe quantum behaviors at the level of individual atoms for the first time.

The MIT group directly visualized sodium atoms (bosons) bunching together in a shared quantum wave — a vivid confirmation of the de Broglie wave theory — and lithium atoms (fermions) pairing up despite their natural repulsion, a key mechanism underlying superconductivity.

“This kind of pairing is the basis of a mathematical construction people came up with to explain experiments. But when you see pictures like these, it’s showing in a photograph, an object that was discovered in the mathematical world,” said co-author Richard Fletcher in a press statement.

Two other research teams — one led by Nobel laureate Wolfgang Ketterle at MIT, and another by Tarik Yefsah at École Normale Supérieure — also reported similar quantum imaging breakthroughs in the same journal issue, marking a significant moment in the experimental visualization of quantum mechanics.

The MIT team plans to expand the technique to probe more exotic quantum behaviors, including quantum Hall states. “Now we can verify whether these cartoons of quantum Hall states are actually real,” Zwierlein added. “Because they are pretty bizarre states.”

Continue Reading

Trending