Society
RFK Jr. at HHS: A health reformer or a risk to public safety?
Robert f. Kennedy jr. And the future of US Health policy: A closer look at the implications of his anti-vaccine stance and food reform efforts

The recent announcement that Robert F. Kennedy (RFK) Jr. has been tapped to head the U.S. Department of Health and Human Services (HHS) under the second term of President Donald Trump has sent shockwaves through the health and scientific communities. Kennedy, a well-known anti-vaccine activist, has long championed controversial views about immunization, leading many to worry about the potential consequences of his appointment for public health in the United States. However, while his positions on vaccines remain contentious, his advocacy for stricter regulations on processed foods, particularly in school nutrition, raises an important debate about the intersection of health, policy, and public welfare.
The Anti-Vaccine Movement: A Dangerous Shift?
Robert F. Kennedy Jr.’s views on vaccines are well-documented and widely criticized by the medical community. He has persistently questioned the safety and efficacy of vaccines, despite overwhelming scientific consensus that vaccines are among the most effective public health tools available to prevent infectious diseases. His stance runs counter to decades of research that have demonstrated the life-saving benefits of vaccines, from eradicating smallpox to virtually eliminating polio and reducing the incidence of diseases like measles, mumps, and rubella.
This would particularly threaten vulnerable populations, such as infants, elderly individuals…
Kennedy’s vocal opposition to vaccine mandates, coupled with his belief that vaccines may cause harm—particularly to children—has placed him at odds with leading medical experts and public health authorities. His appointment as the head of HHS, the agency responsible for overseeing the nation’s public health policy, could have profound consequences. If Kennedy uses this platform to advocate for policies that reduce vaccination rates or diminish the credibility of scientific research supporting vaccines, it could lead to a resurgence of preventable diseases. This would particularly threaten vulnerable populations, such as infants, elderly individuals, and those with compromised immune systems, who rely on herd immunity to stay safe.
In the context of the ongoing global health challenges, including the COVID-19 pandemic, Kennedy’s stance on vaccines poses a potential risk to efforts aimed at preventing future outbreaks. If the U.S. were to experience another pandemic under his leadership, Kennedy’s approach to vaccines could undermine the country’s ability to respond effectively, endangering millions of lives.
A Silver Lining: Food Reform and Child Nutrition
While Kennedy’s anti-vaccine rhetoric remains a cause for concern, his stance on food policy, particularly regarding the food served in schools, offers a more promising avenue for public health reform. Kennedy has been a vocal critic of the processed food industry, particularly its influence on school lunches. He has argued that the widespread consumption of unhealthy, highly processed foods is a key factor driving the obesity and chronic disease epidemics in the United States, particularly among children.
The connection between poor nutrition and health outcomes is well-established. Diets high in processed foods, sugars, and unhealthy fats contribute to a range of health issues, from obesity and diabetes to heart disease and hypertension. The alarming rise in childhood obesity rates has prompted calls for more stringent regulations around the food products served in schools, where many children receive a significant portion of their daily calories. Kennedy’s push for healthier school meals, free from processed foods and filled with nutritious alternatives, is a policy that aligns with the recommendations of many nutrition experts.
Kennedy’s calls for food reform could provide a much-needed counterbalance to the harmful influence of corporate interests in the food industry
While his anti-vaccine views may overshadow his other positions, Kennedy’s stance on food reform is one that could benefit the health of future generations. Improving the quality of food served to schoolchildren would not only help combat rising rates of childhood obesity but could also reduce the long-term burden of chronic diseases, ultimately easing the strain on the nation’s healthcare system.
A Complex Legacy and Uncertain Future
The nomination of Robert F. Kennedy Jr. to head HHS is emblematic of the broader tensions within the Trump administration, which has frequently positioned itself against the scientific establishment. Kennedy’s promotion, alongside other controversial picks, suggests a continuation of the president’s desire to reshape key federal agencies in line with his ideological and political views, often at odds with established science and public health expertise.
However, Kennedy’s anti-establishment persona also resonates with a segment of the American public that feels disconnected from traditional political elites and the institutions that govern public health. His views on vaccines may appeal to those who distrust government-mandated health policies, even if those policies are grounded in extensive scientific research.
At the same time, Kennedy’s calls for food reform could provide a much-needed counterbalance to the harmful influence of corporate interests in the food industry. If he were to focus on improving the nutritional standards of school meals and advocating for greater transparency in food labeling, he could help shift the national conversation toward healthier diets and better public health outcomes.
A Balancing Act for Public Health
As Robert F. Kennedy Jr. takes on the responsibility of leading the U.S. Department of Health and Human Services, the country faces a complex and uncertain future. While his stance on vaccines raises significant concerns, his advocacy for healthier food policies could offer valuable solutions to the growing public health crisis of diet-related diseases. In navigating his dual legacy of promoting vaccine skepticism and championing food reform, Kennedy will need to balance his controversial views with the scientific evidence that underpins public health policy.
The true test of his leadership will be whether he can embrace evidence-based health practices while addressing the pressing challenges of childhood nutrition, chronic disease prevention, and the fight against harmful food industries. If Kennedy can move beyond his anti-vaccine stance and focus on fostering a healthier, more informed public, his tenure at HHS could ultimately benefit the health and well-being of Americans—especially the nation’s children, who will inherit the public health policies of today.
Earth
In ancient India, mushy earth made for perfume scent
Kannauj, a city in the Indian state of Uttar Pradesh, offers a sustainable alternative in producing perfumes using traditional modes of distillation.

A sweet scent typically lingers around in the air at Kannauj, an ancient city in India’s most populous state of Uttar Pradesh. It’s an imprint of the countless occasions when it had rained, of roses that bloomed at dawn, and of sandalwood trees that once breathed centuries of calm.. Though mushy smells are not unique to Kannauj, the city utilized traditional distillation methods to make perfume out of these earthly scents.
Kannauj has had a longstanding tradition in perfume-making since four centuries ago. The city, colloquially known as the country’s ancient perfume capital, still uses rustic copper stills, wood-fired ovens, and bamboo pipes leading to sandalwood oil-filled vessels, or attar as it is colloquially known, to make their perfume. Though it gives a pre-industrial look, a closer peek would reveal an ecosystem of complex thermal regulation, plant chemistry, sustainability science, and hydro-distillation chemistry at work.
When synthetically-made but sustainable perfumes, and AI-generated ones share the spotlight today, Kannauj’s tryst with perfumes offer an alternative, sustainable model in traditional distillation, which is inherently low-carbon, zero-waste, and follow principles of a circular economy; all in alignment with sustainable development goals.
Traditional perfume-making is naturally sustainable
In industrial processing, hydro-distillation is a commonly done to separate substances with different boiling points. Heating the liquids produce vapors, which can later be liquefied in a separate chamber. Perfumers in Kannauj follow the same practice, except it promises to be more sustainable with the copper stills, a process colloquially known as dheg-bhakpa hydro-distillation.
There’s no alcohol or synthetic agents in use. Instead, they heat up raw botanicals – such as roses, vetiver roots, jasmine, or even sunbaked clay – to precise temperatures well short of burning, thereby producing fragrant vapor. The vapors are then guided into cooling chambers, where they condense and bond with a natural fixative, often sandalwood oil. Plant residue is the only byproduct, which finds use as organic compost to cultivate another generation of crops.

Trapping earthly scent to make perfume
In the past five years, Kannauj’s veteran perfumers noticed a quiet, but steady shift in their timely harvest and produce. Rose harvests have moved earlier by weeks. Vetiver roots grow shallower due to erratic rainfall. Jasmine yields are fluctuating wildly. The local Ganges river, which influences humidity levels essential for distillation timing, is no longer as predictable. For an entire natural aromatic economy built on seasonal synchrony, this uncertainty has rung alarm bells.
“The scent of a flower depends not just on the flower itself,” Vipin Dixit, a third-generation attar-maker whose family has distilled fragrance for decades, said to EdPublica.
“It depends on the weather the night before, on the heat at sunrise, on the moisture in the air. Even the soil has a scent-memory.”

As a result, perfumers in Kannauj have begun to adapt, applying traditional wisdom through a modern scientific lens. Local distillers are now working with botanists and environmental scientists to study soil microbiomes, measure scent compounds using chromatography, and develop community-based rainwater harvesting to ensure sustainable crop health.
One of the most surprising innovations is trapping petrichor — the scent of first rain — through earth attars. Clay is baked during extreme heat waves, mimicking summer conditions, then distilled to trap the scent of rain hitting dry soil. This aroma, called mitti attar, is one of the few scents in the world created from an environmental phenomenon; and not a flower.
At a time when the world is scrambling to save biodiversity, the humble attar may become a template for green chemistry — one that doesn’t just preserve scent, but also restores the relationship between science, nature, and soul.
Society
How Scientists and Investigators Decode Air Crashes — The Black Box and Beyond
The final report may take months, but it will be critical in issuing safety directives or revising standard procedures.

As rescue and recovery operations continue following the June 12, 2025, plane crash in Ahmedabad, aviation safety experts are now focusing on the technical investigation phase. With 241 lives lost, the search for the cause isn’t just about accountability—it’s about prevention.
The Black Box: Aviation’s Memory Keeper
1. What Is the Black Box?
Despite the name, the black box is actually orange — for visibility. It consists of two components:
- Cockpit Voice Recorder (CVR): Captures conversations and audio from the flight deck.
- Flight Data Recorder (FDR): Logs dozens to hundreds of parameters — speed, altitude, engine status, control inputs.
These devices are housed in titanium or steel and can withstand:
- Temperatures above 1,000°C
- Underwater pressures up to 20,000 feet
- Crashes with up to 3,600 G-force
They also emit underwater locator beacons for up to 30 days.
2. Forensic Engineering & Flight Reconstruction
Beyond black boxes, investigators use:
- Radar data and air traffic control logs
- Wreckage analysis for structural failure clues
- Satellite-based tracking systems like ADS-B
- Weather data for turbulence or wind shear insights
Forensic teams often reconstruct the flight path virtually or even physically using recovered debris to determine failure points.
3. Human Factors & AI in Modern Investigation
New tools like machine learning and human factors analysis are used to identify procedural errors or lapses in judgement.
In many modern investigations, AI helps:
- Filter large datasets (e.g., over 1,000 flight parameters per second)
- Detect patterns missed by the human eye
- Predict similar risk scenarios in future flights
What Happens Next in the Ahmedabad Crash?
Authorities, in coordination with the Directorate General of Civil Aviation (DGCA), are likely:
- Retrieving and analyzing the black box
- Interviewing air traffic controllers
- Reconstructing the aircraft’s final seconds using both data and simulation
The final report may take months, but it will be critical in issuing safety directives or revising standard procedures.
Society
Researchers Unveil Light-Speed AI Chip to Power Next-Gen Wireless and Edge Devices
This could transform the future of wireless communication and edge computing

In a breakthrough that could transform the future of wireless communication and edge computing, engineers at MIT have developed a novel AI hardware accelerator capable of processing wireless signals at the speed of light. The new optical chip, built for signal classification, achieves nanosecond-level performance—up to 100 times faster than conventional digital processors—while consuming dramatically less energy.
With wireless spectrum under growing strain from billions of connected devices, from teleworking laptops to smart sensors, managing bandwidth has become a critical challenge. Artificial intelligence offers a path forward, but most existing AI models are too slow and power-hungry to operate in real time on wireless devices.
The MIT solution, known as MAFT-ONN (Multiplicative Analog Frequency Transform Optical Neural Network), could be a game-changer.
“There are many applications that would be enabled by edge devices that are capable of analyzing wireless signals,” said Prof. Dirk Englund, senior author of the study, in a media statement. “What we’ve presented in our paper could open up many possibilities for real-time and reliable AI inference. This work is the beginning of something that could be quite impactful.”
Published in Science Advances, the research describes how MAFT-ONN classifies signals in just 120 nanoseconds, using a compact optical chip that performs deep-learning tasks using light rather than electricity. Unlike traditional systems that convert signals to images before processing, the MIT design processes raw wireless data directly in the frequency domain—eliminating delays and reducing energy usage.
“We can fit 10,000 neurons onto a single device and compute the necessary multiplications in a single shot,” said Ronald Davis III, lead author and recent MIT PhD graduate.
The device achieved over 85% accuracy in a single shot, and with multiple measurements, it converges to above 99% accuracy, making it both fast and reliable.
Beyond wireless communications, the technology holds promise for edge AI in autonomous vehicles, smart medical devices, and future 6G networks, where real-time response is critical. By embedding ultra-fast AI directly into devices, this innovation could help cars react to hazards instantly or allow pacemakers to adapt to a patient’s heart rhythm in real-time.
Future work will focus on scaling the chip with multiplexing schemes and expanding its ability to handle more complex AI tasks, including transformer models and large language models (LLMs).
-
Earth4 months ago
How IIT Kanpur is Paving the Way for a Solar-Powered Future in India’s Energy Transition
-
Space & Physics3 months ago
Could dark energy be a trick played by time?
-
Society4 months ago
Starliner crew challenge rhetoric, says they were never “stranded”
-
Earth2 months ago
122 Forests, 3.2 Million Trees: How One Man Built the World’s Largest Miyawaki Forest
-
Space & Physics3 months ago
Sunita Williams aged less in space due to time dilation
-
Space & Physics6 months ago
Obituary: R. Chidambaram, Eminent Physicist and Architect of India’s Nuclear Program
-
Society4 months ago
Sustainable Farming: The Microgreens Model from Kerala, South India
-
Women In Science3 months ago
Neena Gupta: Shaping the Future of Algebraic Geometry