EDUNEWS & VIEWS
India: Big Science in the 20th century and beyond
In this blog post, Ed Publica’s Science Editor, Karthik Vinod, skims over some of the state-funded science projects in India that existed before and after independence.
Science after World War II
Scientific research changed forever in the aftermath of the World War II. Nuclear weapons entered the fray, and scientists worked – not alone anymore – but now in groups rivalling organizations. Governments walked in for the first time, institutionalizing science as a state-project. In the US, Vannevar Bush’s Science: the Endless Frontier advocated for a dichotomy within science, between applied and basic research. India soon advocated for something Though flawed, it’s a blueprint used across the world, including in India. But it needs to change.
Following independence, Jawaharlal Nehru, India’s first prime minister, resorted to building centralized institutions across the country, with the Indian Institute of Technologies (IITs) being famous amongst those pursuing a technical stream. Along with the Indian Institute of Science (IISc.), they’ve attracted the country’s most meritorious and bright students. Nehru viewed and appreciated scientific thinking as a “way of life” and an aspect that’ll break the shackles of superstitious belief in many Indians. He popularized the phrase “scientific temper”, which was later amended into the Indian constitution by his daughter and late prime minister, Indira Gandhi. However, this was during the Emergency Period, when democracy was curtailed, dissidents were imprisoned, and mass sterilization campaigns castrated many men against their will.
Keeping political hypocrisy aside, the administrations since then hasn’t picked up much steam either on being serious about its fundamental scientific research. This is not to say there hasn’t been marvels in technological innovation. Vikram Sarabhai, the technocrat scientist and aristocrat, who helped seed incentives for the country to invest in a space program, envisioned science and technology to enable Indians use of state-of-the-art technology, without going through the rudimentary “stages of growth” that was thought to plague many developing nations. The Indian Space Research Organization (ISRO) builds satellites and rockets, and has been the harbinger rather in public eye for the country’s assertive rise as a space power. Fundamental science research has taken a backseat, with funding woes and political apathy felt even today.
Funding for ISRO virtually trumps anything else that churns in public scientific institutions. Though this is a common attributed share among space faring nations, India’s amongst the lower tier of nations that spends on research and development (R&D) – constituting just 0.64% of the Indian economy, and a continuing decline in funds allocated in yesteryears. India’s next door neighbor China spends some 2.4%, and both the US and UK spend either 3% or more per year.
It’s not like India doesn’t have illustrious or even seminal scientific contributions in the modern age. Scientific research did flourish in British India, amongst a few practitioners, benefitting from uninterrupted time in their laboratories with relatively cheap equipment– as with experimentalists such as Jagdish Chandra Bose and C.V. Raman; to name a few, or theorists including Meghnad Saha and S.N. Bose. Today though, these names remain largely confined to history in public discourse.
Science in pre-independent India
The imperial capital of science in India, Calcutta, was home to top-tier frontier research in quantum mechanics in the early 20th century. In the 1920s, Satyendra Nath Bose, a theorist, solved a particular problem related to the blackbody radiation law that evaded even Einstein. Bose, whom we profiled in our Know the Scientist page, fostered a collaboration with Einstein, culminating in numerous theoretical advances in quantum statistics, especially predicting the fifth state of matter, the Bose-Einstein condensate. Paul Dirac, the English physicist, coined the name bosons, after the class of quantum particles with integer spins, that Bose and Einstein’s statistics describe properties. It was one of these bosons (a word-play on “Bose-ons”) that particle physicists confirmed at the Large Hadron Collider (LHC) in Geneva, Switzerland in 2012.
Science during British India was top-notch, and continued its trend in the immediate aftermath of Indian independence. In 1948, Calcutta was abuzz again, but now with a cyclotron that they were building. A cyclotron’s a device that accelerates particles to near light-speed in the presence of electromagnetic fields, thereby producing radiation. It aided in frontier research in nuclear physics, for example, measuring cross-sections of the uranium nucleus (U-235). Housed at the Saha Institute of Nuclear Physics, accelerator physicists received funding to build a bigger cyclotron at the Variable Energy Cyclotron Centre, touching energies in the MeV range. Today, it’s part of the International Radioactive Ion Beam consortium, helping spread India’s fundamental research reach across the world.
So far, there’s been little coverage about the research in much of central universities and research institutions. It’s surprising how Bose’s contribution to quantum theory found no mention in India’s media discourse. Indian science hasn’t had limelight, not because there’s little research output – though there’s a case to make, as many has made before – but there’s a need for science communicators and journalists to help bridge that gap that exists between scientists and the public. The government has shown little consideration to extend science communication beyond publishing white papers about its importance.
Scientist or engineer?
Media representation of science is confused. The space program, that receives much public adulation and emblematic of national pride, is wrongly perceived as a scientific institution. Space engineers have become scientists in the public eye, despite rocket and satellite development is a matter of engineering, and not science. The former Indian president and “ISRO scientist” Abdul Kalam wasn’t a scientist per se, but an aerospace engineer. Barely mentioned in our public discourse are scientists that’ve done commendable research across the sciences.
Science done in central or local institutions for that matter hasn’t shared the limelight, anywhere as ISRO has since Independence. It’s the government’s pet, and has shaped narratives of technological innovation within and outside India. But this is largely technology history, without much scientific imperative.
Taking initiative
On the flip side, there’s much smaller science projects, that does combine the best of both worlds, combining technology development and science; thus blurring the dichotomy between applied and basic science research.
Govind Swarup, an Indian astronomer, worshiped by his peers as a “father of Indian radio astronomy” had voiced for a radio observatory, the first of its kind in Asia, to be constructed in the 1950s. The Indian government wasn’t interested, unless the astronomers received funds from sponsor countries. Australia had offered to pay and construct, after a long tussle, following which either party withdrew from discussions.
It was not until the 1980s, did India commence building an indigenous radio telescope. In 1995, the country’s first radio telescope, the Great Metrewave Radio Telescope (GMRT) was operational after a decade of construction. The team at GMRT contributed to the first detections of the cosmic gravitational wave background with its European radio astronomy counterparts in the Pulsar Timing Array project.
In 2016, the Indian astronomy community were greenlit to construct a gravitational wave detector in Pune, following confirmation of gravitational waves in February that year. Though this project too bas been plagued by successive delay construction would supposedly take off soon (perhaps late this year). In light of these late developments, politicians and scientists have begun beating the drums about the potential economic impact from involving Indian industry in the construction of the detector – utilizing state-of-the-art quantum technologies – in partnership with international teams. For the scientific community, precious data from the detector is incentive for attracting and inspiring the country’s emerging scientific talent.
Meanwhile, there’ve been hurdles that’ve prevented few other projects from taking off. The India-based Neutrino Observatory (INO), in Tamil Nadu, is one glaring example. Poor policy making amid environmental concerns that wasn’t addressed in time has forestalled construction for more than a decade. In this case rather, neither scientist nor policy maker bothered to engage with the public and hear out their concerns. And it takes much more development in science policies and public engagement to resolve these systemic issues.
EDUNEWS & VIEWS
Trump’s push to abolish the Education Department: Could it really transform schools?
So, what would an America without the Department of Education look like?
President-elect Donald Trump wants the Department of Education gone. During his presidential campaign, Trump made waves by repeatedly pledging to eliminate the U.S. Department of Education, calling it a symbol of federal overreach and an unnecessary drain on taxpayer money. The promise was bold: “We will ultimately eliminate the federal Department of Education,” he declared at a rally in Wisconsin back in 2016. His critics and supporters alike raised eyebrows, but what would actually happen if such a move were to be made?
The Department of Education, created in 1979 under President Jimmy Carter, has long played a pivotal role in shaping America’s education system. If Trump’s plan were to move forward, it could mean sweeping changes to how K-12 schools are funded and how federal education policies are implemented.
The Core Functions of the Department
The Department of Education performs several essential roles in the American education system. For one, it funnels billions of federal dollars to states and schools. Its two major funding programs—Title I and IDEA—help support schools serving low-income students and children with disabilities. These programs provide nearly $28 billion annually to K-12 schools, although they represent only a small fraction of overall school funding. The bulk of K-12 school budgets comes from state and local taxes. The Department of Education also manages federal student loans and financial aid programs, including Pell grants, which distribute about $30 billion annually to help low-income college students.
Without these programs, how would schools and students fare? The answer isn’t clear-cut, but one thing is certain: federal funding has become a significant tool in ensuring access to education, especially for marginalized groups.
The Bureaucratic Web: Oversight and Regulations
In addition to distributing funding, the Department of Education plays an oversight role, ensuring that schools meet federal standards and investigating issues of discrimination. Through its Office of Civil Rights, the department enforces rules aimed at preventing discrimination on the basis of race, gender, and disability in schools. Over the years, the department has also been a key player in regulating hot-button issues—such as protections for transgender students and regulations on student loan forgiveness programs.
But what happens if this regulatory body no longer exists? One potential scenario could involve the transfer of these responsibilities to other federal agencies or a decentralization of decision-making power to state and local governments.
Federal Funds: The Strings Attached
Federal money doesn’t come without conditions. For instance, schools that receive funding through programs like Title I must adhere to certain rules and regulations. These guidelines can sometimes create what many consider “red tape.” For years, critics of the Department have argued that the bureaucracy tied to federal funding slows down school improvement efforts and imposes undue burdens on local administrators.
According to experts, the funding programs might survive, albeit in a different structure
Some policy experts suggest that even if the Department of Education were dissolved, the funding itself could continue—possibly in the form of block grants that offer more flexibility to local districts. But others warn that dismantling the department could result in a loss of essential oversight and services, especially for students with special needs.
What Happens to Federal Education Programs?
Interestingly, many of the funding programs the Department of Education oversees—particularly Title I and IDEA—were in place before the agency itself existed. This raises the question: Would these programs disappear if the department were abolished?
According to experts, the funding programs might survive, albeit in a different structure. Congress, which ultimately controls federal spending, has historically resisted efforts to cut education funding, even during budget negotiations when past presidents proposed cuts. Many believe that, even if the Department were to close its doors, the political and public support for these funding streams would likely push them into different agencies or programs.
Can Congress Actually Abolish the Department of Education?
While Trump’s rhetoric may have made abolition sound simple, shutting down a federal agency is no small feat. It would require an act of Congress—a challenge that previous efforts have failed to overcome. Even President Ronald Reagan, shortly after the department’s creation in 1980, proposed its elimination but eventually backed down due to lack of congressional support. The Trump administration also tried to merge the Education and Labor Departments, but that effort stalled in Congress.
Even if the GOP gains unified control of Washington in the coming years, it remains uncertain whether there will be enough support to completely dismantle the Department of Education.
The Road Ahead
So, what would an America without the Department of Education look like? In reality, it’s likely that some form of federal oversight and funding would continue, but the shape of it could change significantly. If Congress and the president were to act, the most likely outcome would be a shift in how federal funds are distributed—potentially with fewer strings attached—and a reorganization of some of the department’s key functions.
While Trump’s rhetoric may have made abolition sound simple, shutting down a federal agency is no small feat. It would require an act of Congress
Ultimately, the debate about whether to abolish the Department of Education touches on much larger issues: how to balance federal power with state autonomy, how to fund public schools fairly, and how to ensure that all students, regardless of background, have access to a high-quality education.
As the conversation continues, one thing is clear: any significant change to the Department of Education would have profound implications for the future of education in America, particularly for its most vulnerable students. Whether that future is shaped by a more decentralised approach or by a reformed federal agency remains to be seen. But one thing is for sure—the stakes are high.
EDUNEWS & VIEWS
IIT Ropar unveils eco-friendly mechanical machine for knee rehabilitation
The introduction of this innovative mechanical CPM machine marks a significant step toward democratizing healthcare and improving rehabilitation outcomes globally.
In a major development for knee rehabilitation, researchers at Indian Institute of Technology (IIT) Ropar have introduced a revolutionary, low-cost solution to make Continuous Passive Motion (CPM) therapy more accessible to patients. The team’s newly patented innovation, the Completely Mechanical Passive Motion Machine for Knee Rehabilitation, is set to transform post-surgical recovery, especially in resource-limited areas.
Unlike traditional motorized CPM devices, which are expensive and reliant on electricity, the new machine operates entirely through mechanical means. Utilizing a piston and pulley system that stores air as the user pulls a handle, the device enables smooth, controlled knee motion to aid in rehabilitation. This design eliminates the need for electricity, batteries, or motors, making the machine lightweight, portable, and environmentally friendly.
The mechanical CPM machine addresses a key barrier to knee therapy: the high cost and power dependence of conventional electric machines. It offers a viable alternative for patients, particularly in rural and off-grid areas, where access to electricity is often unreliable. Its portability also enables patients to continue their therapy at home, reducing the need for frequent hospital visits or prolonged stays.
Knee rehabilitation is crucial for patients recovering from surgeries, as CPM therapy helps improve joint mobility, reduce stiffness, and speed up recovery. With this new device, IIT Ropar’s researchers are offering a cost-effective, sustainable option that could improve the lives of countless patients, especially in India, where advanced medical technology can be scarce in rural regions.
Lead researcher Dr. Abhishek Tiwari, along with his team members Suraj Bhan Mundotiya and Dr. Samir C. Roy, expressed optimism about the machine’s potential. “This device has the power to revolutionize knee rehabilitation, particularly in areas where access to sophisticated medical equipment is limited. It’s designed to be an affordable and eco-friendly solution that not only aids in recovery but also minimizes environmental impact,” said Dr. Tiwari.
The introduction of this innovative mechanical CPM machine marks a significant step toward democratizing healthcare and improving rehabilitation outcomes globally.
EDUNEWS & VIEWS
Tata’s indelible legacy in science and education
Beyond business, Ratan Tata, the ex-leader of India’s massive business empire, believed in the true power of science and education
Ratan Tata, India’s most admired industrialist who passed away on October 9, 2024, has left behind an indelible legacy that extends well beyond the business sector, profoundly influencing education and scientific advancement in India. His visionary outlook emphasized the transformative potential of knowledge, reinforcing his belief that education is essential for societal growth.
Throughout his life, Tata, the man who built a business empire with revenue of $165 billion, was deeply committed to empowering future generations. Through Tata Trusts, he championed philanthropic initiatives aimed at supporting students from economically disadvantaged backgrounds, offering scholarships that allow them to pursue higher education both domestically and internationally. This commitment reflects his conviction that education should be accessible to all, serving as a vital pathway to opportunity.
Among his significant contributions is the establishment of Tata Scholarships at prestigious institutions such as Cornell University, which facilitate access to top-tier education for deserving Indian students. Tata’s vision also led to the founding of key educational institutions within India, including the Tata Institute of Social Sciences (TISS) and the Tata Institute of Fundamental Research (TIFR). These institutions play a crucial role in nurturing talent and fostering innovative thinking.
In 2014, Tata Trusts, which controls majority stake in Tata Sons, made a significant contribution of $9 million to the Centre for Neuroscience at IISc, aimed at advancing vital research into Alzheimer’s disease.
Under his guidance, the Tata Group greatly increased its investment in research and development, laying the groundwork for India’s rise as a global technology leader. Tata’s focus on innovation not only addressed market demands but also created a foundation for trailblazing advancements that have the potential to transform industries.
One of Tata’s most impactful legacies in science is his unwavering support for leading educational and research institutions. The Indian Institute of Science (IISc) in Bengaluru, which has roots in Jamshedji Tata’s vision, continued to thrive under Ratan Tata’s leadership. A government agency recently ranked IISc as India’s top university.
In 2014, Tata Trusts, which controls majority stake in Tata Sons, made a significant contribution of $9 million to the Centre for Neuroscience at IISc, aimed at advancing vital research into Alzheimer’s disease. This initiative shows his belief in the importance of scientific inquiry and its potential to tackle pressing societal challenges.
In the fields of genetics and biotechnology, Tata’s foresight led to the creation of the Tata Institute for Genetics and Society at the University of California, San Diego
Tata’s dedication to advancing scientific research is further highlighted by the establishment of specialized centres addressing societal needs. The Tata Centre for Technology and Design at IIT Bombay and the MIT Tata Centre of Technology and Design were created to develop engineering solutions for resource-limited communities. These initiatives not only stimulate innovation but also connect academic research with practical applications, ensuring that scientific progress serves society.
In the fields of genetics and biotechnology, Tata’s foresight led to the creation of the Tata Institute for Genetics and Society at the University of California, San Diego, with a substantial $70 million donation. This institute conducts cutting-edge research in genetics, gene editing, and stem cell therapy, placing India at the forefront of global genetic studies.
Tata’s commitment to environmental sustainability is reflected in his support for research at the University of New South Wales Faculty of Engineering, focusing on developing water purification technologies for underserved regions. This dedication highlights his belief in the capacity of science to create sustainable solutions for pressing global challenges.
As India reflects on the loss of this influential leader, Ratan Tata’s enduring legacy in education and science serves as a powerful reminder of his vision. His initiatives have positively impacted around 3.6 million students and teachers across 26 states and 145 districts in India, helping to shape a future where knowledge and innovation drive societal advancement. Ratan Tata’s life and work inspire us to recognize that true success is measured not just by business achievements, but by the positive change we bring to the world through education and research.
Tata’s Education
Ratan Tata’s educational journey began at Campion School in Mumbai, India’s financial capital, where he studied until the 8th grade. He then attended several prestigious institutions, including Cathedral and John Connon School in Mumbai, Bishop Cotton School in Shimla, and Riverdale Country School in New York City, from which he graduated in 1955. Following high school, he pursued higher education at Cornell University, earning a bachelor’s degree in architecture in 1959.
During his time at Cornell, Tata joined the Alpha Sigma Phi Fraternity. In recognition of his commitment to education, he made a historic contribution of $50 million to the university in 2008, marking him as the largest international donor in its history. Additionally, Tata furthered his studies by completing the Advanced Management Program at Harvard Business School in 1975.
-
Space & Physics9 months ago
In search for red aurorae in ancient Japan
-
Know The Scientist9 months ago
The ‘pulsing’ star in science was denied a Nobel Prize
-
Know The Scientist9 months ago
S N Bose – the world’s most underrated quantum maestro
-
Space & Physics9 months ago
Superconducting Saga: What happened to LK-99?
-
Society9 months ago
Musk wants to colonize Mars with 1 million people
-
Interviews9 months ago
‘Democratise Sanskrit, it’s the time for third Sanskrit revolution’
-
Interviews9 months ago
Study what you love, to love what you do
-
Society9 months ago
Why mother language-based science education is essential