Connect with us

Space & Physics

Ancient Hindu text Rig Veda reveals oldest known solar eclipse record

The Rig Veda, a sacred compilation of hymns and philosophical discourses from around 1500 B.C., has long been recognized for its rich historical and astronomical references

Published

on

Image by Chris Reich from Pixabay

In a remarkable discovery, astronomers have unearthed what could be the oldest known reference to a total solar eclipse, embedded within the ancient Hindu text, the Rig Veda. This revelation places the eclipse approximately 6,000 years ago, predating previous records by millennia.

The Rig Veda, a sacred compilation of hymns and philosophical discourses from around 1500 B.C., has long been recognized for its rich historical and astronomical references. Traditionally, these references have been used to track celestial events like the position of the vernal equinox. By studying these texts, astronomers can pinpoint historical astronomical phenomena due to Earth’s axial precession—a gradual wobble that shifts the positions of celestial events over millennia.

In particular, the Rig Veda describes the vernal equinox’s location shifting from Orion around 4500 B.C. to the Pleiades around 2230 B.C., indicating that some of the text’s celestial records predate its compilation. Recent research by Mayank Vahia from the Tata Institute of Fundamental Research in Mumbai and Mitsuru Soma from the National Astronomical Observatory of Japan has now identified references that likely describe a total solar eclipse.

Their analysis, published in the Journal of Astronomical History and Heritage, highlights passages that describe the sun being “pierced” by darkness and gloom, with “magic arts” of the sun vanishing—imagery fitting for an eclipse. Importantly, these descriptions precede the well-known Hindu mythological story of Rahu and Ketu, suggesting they were documented before this mythos emerged.

Credit: Researchers

Further examination of the Rig Veda’s astronomical references narrowed down the eclipse to a period when the vernal equinox was in Orion, occurring just days before an autumnal equinox. The analysis identified two potential dates for the eclipse: October 22, 4202 B.C., and October 19, 3811 B.C. These dates surpass previous records, including a clay tablet from Syria dated to around 1375 B.C. or 1223 B.C. and a rock carving in Ireland from approximately 3340 B.C.

“We propose that the eclipse recorded in the Rig Veda refers to observations made of an eclipse around 4000 BC. By analyzing the description, we propose that the eclipse was the one that occurred in 4202 BC or else in 3811 BC. We propose that it was observed in Central Asia. To our knowledge, this is one of the oldest known references to a specific total solar eclipse mentioned in the historical literature,” the authors said in their study.

This discovery not only pushes back the timeline of recorded astronomical events but also offers a fascinating glimpse into ancient astronomical knowledge and its transmission through sacred texts.

Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *

Space & Physics

MIT unveils an ultra-efficient 5G receiver that may supercharge future smart devices

A key innovation lies in the chip’s clever use of a phenomenon called the Miller effect, which allows small capacitors to perform like larger ones

Published

on

Image credit: Mohamed Hassan from Pixabay

A team of MIT researchers has developed a groundbreaking wireless receiver that could transform the future of Internet of Things (IoT) devices by dramatically improving energy efficiency and resilience to signal interference.

Designed for use in compact, battery-powered smart gadgets—like health monitors, environmental sensors, and industrial trackers—the new chip consumes less than a milliwatt of power and is roughly 30 times more resistant to certain types of interference than conventional receivers.

“This receiver could help expand the capabilities of IoT gadgets,” said Soroush Araei, an electrical engineering graduate student at MIT and lead author of the study, in a media statement. “Devices could become smaller, last longer on a battery, and work more reliably in crowded wireless environments like factory floors or smart cities.”

The chip, recently unveiled at the IEEE Radio Frequency Integrated Circuits Symposium, stands out for its novel use of passive filtering and ultra-small capacitors controlled by tiny switches. These switches require far less power than those typically found in existing IoT receivers.

A key innovation lies in the chip’s clever use of a phenomenon called the Miller effect, which allows small capacitors to perform like larger ones. This means the receiver achieves necessary filtering without relying on bulky components, keeping the circuit size under 0.05 square millimeters.

Credit: Courtesy of the researchers/MIT News

Traditional IoT receivers rely on fixed-frequency filters to block interference, but next-generation 5G-compatible devices need to operate across wider frequency ranges. The MIT design meets this demand using an innovative on-chip switch-capacitor network that blocks unwanted harmonic interference early in the signal chain—before it gets amplified and digitized.

Another critical breakthrough is a technique called bootstrap clocking, which ensures the miniature switches operate correctly even at a low power supply of just 0.6 volts. This helps maintain reliability without adding complex circuitry or draining battery life.

The chip’s minimalist design—using fewer and smaller components—also reduces signal leakage and manufacturing costs, making it well-suited for mass production.

Looking ahead, the MIT team is exploring ways to run the receiver without any dedicated power source—possibly by harvesting ambient energy from nearby Wi-Fi or Bluetooth signals.

The research was conducted by Araei alongside Mohammad Barzgari, Haibo Yang, and senior author Professor Negar Reiskarimian of MIT’s Microsystems Technology Laboratories.

Continue Reading

Society

Ahmedabad Plane Crash: The Science Behind Aircraft Take-Off -Understanding the Physics of Flight

Take-off is one of the most critical phases of flight, relying on the precise orchestration of aerodynamics, propulsion, and control systems. Here’s how it works:

Published

on

On June 12, 2025, a tragic aviation accident struck Ahmedabad, India when a regional passenger aircraft, Air India flight A1-171, crashed during take-off at Sardar Vallabhbhai Patel International Airport. According to preliminary reports, the incident resulted in over 200 confirmed casualties, including both passengers and crew members, and several others are critically injured. The aviation community and scientific world now turn their eyes not just toward the cause but also toward understanding the complex science behind what should have been a routine take-off.

How Do Aircraft Take Off?

Take-off is one of the most critical phases of flight, relying on the precise orchestration of aerodynamics, propulsion, and control systems. Here’s how it works:

1. Lift and Thrust

To leave the ground, an aircraft must generate lift, a force that counters gravity. This is achieved through the unique shape of the wing, called an airfoil, which creates a pressure difference — higher pressure under the wing and lower pressure above — according to Bernoulli’s Principle and Newton’s Third Law.

Simultaneously, engines provide thrust, propelling the aircraft forward. Most commercial jets use turbofan engines, which accelerate air through turbines to generate power.

2. Critical Speeds

Before takeoff, pilots calculate critical speeds:

  • V1 (Decision Speed): The last moment a takeoff can be safely aborted.
  • Vr (Rotation Speed): The speed at which the pilot begins to lift the nose.
  • V2 (Takeoff Safety Speed): The speed needed to climb safely even if one engine fails.

If anything disrupts this process — like bird strikes, engine failure, or runway obstructions — the results can be catastrophic.

Environmental and Mechanical Challenges

Factors like wind shear, runway surface condition, mechanical integrity, or pilot error can interfere with safe take-off. Investigators will be analyzing these very aspects in the Ahmedabad case.

The Bigger Picture

Take-off accounts for a small fraction of total flight time but is disproportionately associated with accidents — approximately 14% of all aviation accidents occur during take-off or initial climb.

Continue Reading

Space & Physics

MIT claims breakthrough in simulating physics of squishy, elastic materials

In a series of experiments, the new solver demonstrated its ability to simulate a diverse array of elastic behaviors, ranging from bouncing geometric shapes to soft, squishy characters

Published

on

Image credit: Courtesy of researchers

Researchers at MIT claim to have unveiled a novel physics-based simulation method that significantly improves stability and accuracy when modeling elastic materials — a key development for industries spanning animation, engineering, and digital fabrication.

In a series of experiments, the new solver demonstrated its ability to simulate a diverse array of elastic behaviors, ranging from bouncing geometric shapes to soft, squishy characters. Crucially, it maintained important physical properties and remained stable over long periods of time — an area where many existing methods falter.

Other simulation techniques frequently struggled in tests: some became unstable and caused erratic behavior, while others introduced excessive damping that distorted the motion. In contrast, the new method preserved elasticity without compromising reliability.

“Because our method demonstrates more stability, it can give animators more reliability and confidence when simulating anything elastic, whether it’s something from the real world or even something completely imaginary,” Leticia Mattos Da Silva, a graduate student at MIT’s Department of Electrical Engineering and Computer Science, said in a media statement.

Their study, though not yet peer-reviewed or published, will be presented at the August proceedings of the SIGGRAPH conference in Vancouver, Canada.

While the solver does not prioritize speed as aggressively as some tools, it avoids the accuracy and robustness trade-offs often associated with faster methods. It also sidesteps the complexity of nonlinear solvers, which are commonly used in physics-based approaches but are often sensitive and prone to failure.

Looking ahead, the research team aims to reduce computational costs and broaden the solver’s applications. One promising direction is in engineering and fabrication, where accurate elastic simulations could enhance the design of real-world products such as garments, medical devices, and toys.

“We were able to revive an old class of integrators in our work. My guess is there are other examples where researchers can revisit a problem to find a hidden convexity structure that could offer a lot of advantages,” Mattos Da Silva added.

The study opens new possibilities not only for digital content creation but also for practical design fields that rely on predictive simulations of flexible materials.

Continue Reading

Trending