Society
Here’s a technique to assess the reliability of AI models before it’s deployed
“All models can be wrong, but models that know when they are wrong are more useful.”

MIT researchers, together with the MIT-IBM Watson AI Lab, have designed a method to assess the dependability of foundational AI models prior to their deployment in specific tasks.
Their method involves analyzing a set of slightly varied models and evaluating how consistently each model learns representations of the same test data point. Consistent representations indicate a reliable model.
This technique offers significant practical implications. It enables decision-makers to determine whether a AI model is suitable for deployment in specific settings without the necessity of testing it on real-world datasets
When compared against current advanced methods, their technique outperformed others in accurately measuring the reliability of foundation models across various downstream classification tasks.
This technique offers significant practical implications. It enables decision-makers to determine whether a AI model is suitable for deployment in specific settings without the necessity of testing it on real-world datasets. This capability is particularly valuable in contexts where accessing datasets is restricted due to privacy concerns, such as in healthcare settings. Furthermore, the method facilitates the ranking of models based on their reliability scores, empowering users to select the most appropriate model for their intended task.
Navid Azizan, senior author of the study and Esther and Harold E. Edgerton Assistant Professor in the MIT Department of Mechanical Engineering and the Institute for Data, Systems, and Society (IDSS), highlights the importance of models being aware of their own limitations: “All models can be wrong, but models that know when they are wrong are more useful.” He emphasizes the challenge in quantifying uncertainty or reliability for foundation models due to their abstract representations, which are inherently difficult to compare. Azizan concludes that their method offers a means to precisely quantify how reliable a model’s representation is for any given input data.
The research paper, authored by Young-Jin Park, a graduate student at LIDS; Hao Wang, a research scientist at the MIT-IBM Watson AI Lab; and Shervin Ardeshir, a senior research scientist at Netflix, will be presented at the Conference on Uncertainty in Artificial Intelligence.
Traditional machine-learning models are typically trained for specific tasks, providing definite predictions based on inputs such as determining whether an image features a cat or a dog. In contrast, foundation models are pretrained on generalized data without prior knowledge of the diverse tasks they will eventually tackle. Users fine-tune these models for specific applications after their initial training.
Unlike conventional models that yield straightforward outputs like “cat” or “dog,” foundation models generate abstract representations based on input data. Evaluating the reliability of such models poses a unique challenge. Researchers adopted an ensemble approach by training multiple models with similar characteristics but slight variations.
“Our concept is akin to gauging consensus. If all these foundation models consistently produce similar representations for any given dataset, then we can infer the model’s reliability,” explains Park.
The challenge arose in comparing these abstract representations. He says that these models output vectors, composed of numerical values, making direct comparisons difficult. The solution involved employing a method known as neighborhood consistency.
In their methodology, researchers established a set of dependable reference points to test across the ensemble of models. They examined neighboring points surrounding each model’s representation of the test data point to gauge consistency.
By assessing the coherence among neighboring points, they could effectively estimate the reliability of the models.
Earth
In ancient India, mushy earth made for perfume scent
Kannauj, a city in the Indian state of Uttar Pradesh, offers a sustainable alternative in producing perfumes using traditional modes of distillation.

A sweet scent typically lingers around in the air at Kannauj, an ancient city in India’s most populous state of Uttar Pradesh. It’s an imprint of the countless occasions when it had rained, of roses that bloomed at dawn, and of sandalwood trees that once breathed centuries of calm.. Though mushy smells are not unique to Kannauj, the city utilized traditional distillation methods to make perfume out of these earthly scents.
Kannauj has had a longstanding tradition in perfume-making since four centuries ago. The city, colloquially known as the country’s ancient perfume capital, still uses rustic copper stills, wood-fired ovens, and bamboo pipes leading to sandalwood oil-filled vessels, or attar as it is colloquially known, to make their perfume. Though it gives a pre-industrial look, a closer peek would reveal an ecosystem of complex thermal regulation, plant chemistry, sustainability science, and hydro-distillation chemistry at work.
When synthetically-made but sustainable perfumes, and AI-generated ones share the spotlight today, Kannauj’s tryst with perfumes offer an alternative, sustainable model in traditional distillation, which is inherently low-carbon, zero-waste, and follow principles of a circular economy; all in alignment with sustainable development goals.
Traditional perfume-making is naturally sustainable
In industrial processing, hydro-distillation is a commonly done to separate substances with different boiling points. Heating the liquids produce vapors, which can later be liquefied in a separate chamber. Perfumers in Kannauj follow the same practice, except it promises to be more sustainable with the copper stills, a process colloquially known as dheg-bhakpa hydro-distillation.
There’s no alcohol or synthetic agents in use. Instead, they heat up raw botanicals – such as roses, vetiver roots, jasmine, or even sunbaked clay – to precise temperatures well short of burning, thereby producing fragrant vapor. The vapors are then guided into cooling chambers, where they condense and bond with a natural fixative, often sandalwood oil. Plant residue is the only byproduct, which finds use as organic compost to cultivate another generation of crops.

Trapping earthly scent to make perfume
In the past five years, Kannauj’s veteran perfumers noticed a quiet, but steady shift in their timely harvest and produce. Rose harvests have moved earlier by weeks. Vetiver roots grow shallower due to erratic rainfall. Jasmine yields are fluctuating wildly. The local Ganges river, which influences humidity levels essential for distillation timing, is no longer as predictable. For an entire natural aromatic economy built on seasonal synchrony, this uncertainty has rung alarm bells.
“The scent of a flower depends not just on the flower itself,” Vipin Dixit, a third-generation attar-maker whose family has distilled fragrance for decades, said to EdPublica.
“It depends on the weather the night before, on the heat at sunrise, on the moisture in the air. Even the soil has a scent-memory.”

As a result, perfumers in Kannauj have begun to adapt, applying traditional wisdom through a modern scientific lens. Local distillers are now working with botanists and environmental scientists to study soil microbiomes, measure scent compounds using chromatography, and develop community-based rainwater harvesting to ensure sustainable crop health.
One of the most surprising innovations is trapping petrichor — the scent of first rain — through earth attars. Clay is baked during extreme heat waves, mimicking summer conditions, then distilled to trap the scent of rain hitting dry soil. This aroma, called mitti attar, is one of the few scents in the world created from an environmental phenomenon; and not a flower.
At a time when the world is scrambling to save biodiversity, the humble attar may become a template for green chemistry — one that doesn’t just preserve scent, but also restores the relationship between science, nature, and soul.
Society
How Scientists and Investigators Decode Air Crashes — The Black Box and Beyond
The final report may take months, but it will be critical in issuing safety directives or revising standard procedures.

As rescue and recovery operations continue following the June 12, 2025, plane crash in Ahmedabad, aviation safety experts are now focusing on the technical investigation phase. With 241 lives lost, the search for the cause isn’t just about accountability—it’s about prevention.
The Black Box: Aviation’s Memory Keeper
1. What Is the Black Box?
Despite the name, the black box is actually orange — for visibility. It consists of two components:
- Cockpit Voice Recorder (CVR): Captures conversations and audio from the flight deck.
- Flight Data Recorder (FDR): Logs dozens to hundreds of parameters — speed, altitude, engine status, control inputs.
These devices are housed in titanium or steel and can withstand:
- Temperatures above 1,000°C
- Underwater pressures up to 20,000 feet
- Crashes with up to 3,600 G-force
They also emit underwater locator beacons for up to 30 days.
2. Forensic Engineering & Flight Reconstruction
Beyond black boxes, investigators use:
- Radar data and air traffic control logs
- Wreckage analysis for structural failure clues
- Satellite-based tracking systems like ADS-B
- Weather data for turbulence or wind shear insights
Forensic teams often reconstruct the flight path virtually or even physically using recovered debris to determine failure points.
3. Human Factors & AI in Modern Investigation
New tools like machine learning and human factors analysis are used to identify procedural errors or lapses in judgement.
In many modern investigations, AI helps:
- Filter large datasets (e.g., over 1,000 flight parameters per second)
- Detect patterns missed by the human eye
- Predict similar risk scenarios in future flights
What Happens Next in the Ahmedabad Crash?
Authorities, in coordination with the Directorate General of Civil Aviation (DGCA), are likely:
- Retrieving and analyzing the black box
- Interviewing air traffic controllers
- Reconstructing the aircraft’s final seconds using both data and simulation
The final report may take months, but it will be critical in issuing safety directives or revising standard procedures.
Society
Researchers Unveil Light-Speed AI Chip to Power Next-Gen Wireless and Edge Devices
This could transform the future of wireless communication and edge computing

In a breakthrough that could transform the future of wireless communication and edge computing, engineers at MIT have developed a novel AI hardware accelerator capable of processing wireless signals at the speed of light. The new optical chip, built for signal classification, achieves nanosecond-level performance—up to 100 times faster than conventional digital processors—while consuming dramatically less energy.
With wireless spectrum under growing strain from billions of connected devices, from teleworking laptops to smart sensors, managing bandwidth has become a critical challenge. Artificial intelligence offers a path forward, but most existing AI models are too slow and power-hungry to operate in real time on wireless devices.
The MIT solution, known as MAFT-ONN (Multiplicative Analog Frequency Transform Optical Neural Network), could be a game-changer.
“There are many applications that would be enabled by edge devices that are capable of analyzing wireless signals,” said Prof. Dirk Englund, senior author of the study, in a media statement. “What we’ve presented in our paper could open up many possibilities for real-time and reliable AI inference. This work is the beginning of something that could be quite impactful.”
Published in Science Advances, the research describes how MAFT-ONN classifies signals in just 120 nanoseconds, using a compact optical chip that performs deep-learning tasks using light rather than electricity. Unlike traditional systems that convert signals to images before processing, the MIT design processes raw wireless data directly in the frequency domain—eliminating delays and reducing energy usage.
“We can fit 10,000 neurons onto a single device and compute the necessary multiplications in a single shot,” said Ronald Davis III, lead author and recent MIT PhD graduate.
The device achieved over 85% accuracy in a single shot, and with multiple measurements, it converges to above 99% accuracy, making it both fast and reliable.
Beyond wireless communications, the technology holds promise for edge AI in autonomous vehicles, smart medical devices, and future 6G networks, where real-time response is critical. By embedding ultra-fast AI directly into devices, this innovation could help cars react to hazards instantly or allow pacemakers to adapt to a patient’s heart rhythm in real-time.
Future work will focus on scaling the chip with multiplexing schemes and expanding its ability to handle more complex AI tasks, including transformer models and large language models (LLMs).
-
Earth4 months ago
How IIT Kanpur is Paving the Way for a Solar-Powered Future in India’s Energy Transition
-
Space & Physics3 months ago
Could dark energy be a trick played by time?
-
Society4 months ago
Starliner crew challenge rhetoric, says they were never “stranded”
-
Earth2 months ago
122 Forests, 3.2 Million Trees: How One Man Built the World’s Largest Miyawaki Forest
-
Space & Physics3 months ago
Sunita Williams aged less in space due to time dilation
-
Space & Physics6 months ago
Obituary: R. Chidambaram, Eminent Physicist and Architect of India’s Nuclear Program
-
Society4 months ago
Sustainable Farming: The Microgreens Model from Kerala, South India
-
Society5 months ago
DeepSeek: The Good, The Bad, and The Ugly