Connect with us

Space & Physics

Need of the Hour – Evading the Kessler Syndrome

In 1978, Donald J. Kessler, an astrophysicist, predicted collisions between satellites can get out of hand as their population keeps increasing.

Karthik Vinod

Published

on

Illustration of space debris and defunct launcher stages in the Geostationary Orbit (GSO). Credit: ESA

In 2009, the Iridium 33 and Kosmos 2251 satellites collided to produce as many as 2,000 debris fragments, spraying 10 cm wide pieces in every direction – at speeds faster than a bullet

If any of these ever struck the ISS, orbiting closely, then all hell can break loose! Remember that scene in Gravity (2013) when Sandra Bullock’s character gets flung around? Well, it’s just one of several worse-case scenarios.

Even today, these space debris hover there, too close to be completely risk-free to the ISS. 

The US’ operate a Space Surveillance Network that tracks these debris, along with more than 20,000 fragments. They comprise old rocket booster stages, junk satellites, missile components from anti-satellite launches. 

However, very tiny pieces of fragments (<10 cm) can still be missed by ground radars. Space debris can include spent rocket stages, or defunct satellites drifting in space.

And a technical fix in orbital debris removing technology arose. 

Last month February 18th saw the launch of the Active Debris Removal by Astroscale-Japan (or ADRAS-J) satellite from Rocket Lab’s launch station in New Zealand. ADRAS-J is yet to actually demonstrate debris removal, as it’s parked in a rendezvous orbit in preparation for the demonstration later this month.

In 2022, the UK stated Active Debris Removal (ADR) as being vital to their Plan for Space Sustainability to “become tomorrow’s norms in space operation”. 

Space agencies across the world now issue commands for ‘collision avoidance maneuvers’ (CAM) when satellites cross within a certain radius. 

In fact, the Indian Space Research Organization (ISRO) actually made public a trend showing the number of CAM commands issued rising every year. Such close-calls will only increase with the cumulative increase of satellites in orbit. 

Here’s a plot from the European Space Agency’s (ESA) 2022 Space Environment Report.

A plot of the number of space debris against time. The legend indicates the various types of space debris (rocket, satellite parts etc.). Credit: ESA 

But the problem is that – these satellite numbers are rising exponentially in such a short time – with mega-constellations entering center stage.

SpaceX launched the Starlink initiative, to demonstrate connectivity even in the remotest parts of the world. 

However, they alone have 5,504 satellites out there to date, all at low-earth orbit – under 600 km, which is quite where the crowd of satellites are now. That’s about 58% of the 9,414 operational satellites out there. And this happened metaphorically overnight – in the past few years. SpaceX plans to operate some 42,000 satellites in a decade.

The fear is that unregulated growth of satellites – or even satellite litter that are defunct – can make what is known as the Kessler syndrome, a reality. 

When Donald Kessler anticipated a chain reaction …

In 1978, Donald J. Kessler, an astrophysicist, predicted that collisions between satellites can trigger a domino effect of other satellite collisions above a certain threshold. Dubbed the Kessler syndrome, it’s a worst-case scenario possible in outer space, when earth’s orbit becomes impossible to thrive in or operate from.

To partly address the growing clutter of low-earth orbit satellites, the US’ Federal Communications Council (FCC) has put up legislation to have newly launched satellites deorbit 5 years after operations.

The irony is that the Kessler syndrome was foreseeable, except it was ignored by policymakers until they simply couldn’t.

Scientists building a satellite at RAL Space. Credit: UK STFC / Wikimedia

Western countries have taken some onus of responsibility into these space sustainability initiatives, simply because countries like the US own most of the satellite infrastructure operating in orbit.  

From space shuttles, rockets, space planes and the lunar lander that brought Neil Armstrong and Edwin Aldrin to the moon, the Space Age heralded a brand new era for space technologies and research. But no space technology probably had more societal impact than the satellite. 

Seen vital for development and infrastructure, satellites are now ubiquitous, manufactured not just by space agencies, but also by engineering labs in universities, private companies and start-ups across the world. 

However, our costly endeavor to improve human lives are breeding new problems. And as a last resort, engineers are at it again to come up with technical fixes. 

But weren’t the technical risks understood if Kessler expressed his concern in the 1970s? 

Satellites, just like any technology, come with its set of benefits and risks. The benefits of satellites are obvious to many – phone connections, weather forecasting, banking, studying climate change, and the list goes on. 

At the end of a satellite’s lifespan though, many just stay there, as defunct satellites. 

Sure, there’s a ‘graveyard’ orbit where satellites can be made defunct after pushing them to a higher orbit to lay to rest forever. But not every defunct satellite is. In fact, 60% of all satellites are defunct. The operational satellites constitute a tiny minority. 

Partly to do with this mess is a lack of priority. The Space Race played out during the peak of the Cold War when both the US and Soviets wanted to demonstrate technological superiority. 

However, the outer orbit isn’t just a matter of mediating traffic or cleaning debris either. 

Space militarization has raised fears. Much of the initial Space Race began with the US and Soviets fearing the other could surveil over their national boundaries. But the tensions have now made headlines, with the ongoing Russian invasion of Ukraine, with the US alleging that the Russians are developing a satellite that can drop nuclear weapons against the West. Building such a weapon would be violative of the 1967 Outer Space Treaty, in addition to several other regulations against weapons of mass destruction (WMDs).

There’s also anti-satellite launch systems firing repurposed ballistic missiles into space missiles. The US, Russia, China and India all possess this technology – and have the capacity to threaten orbital infrastructure – civilian or military. But the consequence of losing control over the weapons, is to hit the threshold dictated by the Kessler syndrome.

We’ll need to bear in mind that even technical fixes can’t fix design thinking. When planners aren’t held accountable, for their individual decisions – such avoidable doomsday disasters become a talking point.

Space & Physics

New double-slit experiment proves Einstein’s predictions were off the mark

Results from an idealized version of the Young double-slit experiment has upheld key predictions from quantum theory.

Published

on

Two individual atoms suspended in a vacuum chamber are illuminated by a laser beam, serving as the two slits. Scattered light interference is captured by a highly sensitive camera shown as a screen. Credit: Courtesy of the researchers/MIT
  • MIT physicists perform the most idealized double-slit experiment to date, using individual atoms as slits.
  • Experiment confirms the quantum duality of light: light behaves as both a particle and a wave, but both behaviors can’t be observed simultaneously.
  • Findings disprove Albert Einstein’s century-old prediction regarding detecting a photon’s path alongside its wave nature.

In a study published in Physical Reviews Letters on July 22, researchers at MIT have realized an idealized version of the famous double-slit experiment in quantum physics yet.

The double-slit experiment—first devised in 1801 by the British physicist Thomas Young—remains a perplexing aspect of reality. Light waves passing through two slits, form interference patterns on a wall placed behind. But this phenomenon is at odds with the fact light also behaves as particles. The contradiction has lent itself to a paradox, which sits at the foundation of quantum mechanics. It has sparked a historic scientific duel nearly a century ago, between physics heavyweights Albert Einstein and Niels Bohr. The study’s findings have now settled the decades-old debate, showing Einstein’s predictions were off the mark.

Einstein had suggested that by detecting the force exerted when a photon passes through a slit—a nudge akin to a bird brushing past a leaf—scientists could witness both light’s wave and particle properties at once. Bohr countered with the argument that observing a photon’s path would inevitably erase its wave-like interference pattern, a tenet since embraced by quantum theory.

The MIT team stripped the experiment to its purest quantum elements. Using arrays of ultracold atoms as their slits and weak light beams to ensure only one photon scattered per atom, they tuned the quantum states of each atom to control the information gained about a photon’s journey. Every increase in “which-path” information reduced the visibility of the light’s interference pattern, flawlessly matching quantum theory and further debunking Einstein’s proposal.

“Einstein and Bohr would have never thought that this is possible, to perform such an experiment with single atoms and single photons,” study senior author and Nobel laureate, Wolfgang Ketterle, stated in a press release. “What we have done is an idealized Gedanken (thought) experiment.”

In a particularly stunning twist, Ketterle’s group also disproved the necessity of a physical “spring”—a fixture in Einstein’s original analogy—by holding their atomic lattice not with springs, but with light. When they briefly released the atoms, effectively making the slits “float” in space, the same quantum results persisted. “In many descriptions, the springs play a major role. But we show, no, the springs do not matter here; what matters is only the fuzziness of the atoms,” commented MIT researcher Vitaly Fedoseev in a media statement. “Therefore, one has to use a more profound description, which uses quantum correlations between photons and atoms.”

The paper arrives as the world prepares for 2025’s International Year of Quantum Science and Technology — marking 100 years since the birth of quantum mechanics. Yoo Kyung Lee, a fellow co-author, noted in a media statement, “It’s a wonderful coincidence that we could help clarify this historic controversy in the same year we celebrate quantum physics.”

Continue Reading

Space & Physics

Researchers Uncover New Way to Measure Hidden Quantum Interactions in Materials

Published

on

Image credit: Pixabay

A team of MIT scientists has developed a theory-guided strategy to directly measure an elusive quantum property in semiconductors — the electron-phonon interaction — using an often-ignored effect in neutron scattering.

Their approach, published this week in Materials Today Physics, reinterprets an interference effect, typically considered a nuisance in experiments, as a valuable signal. This enables researchers to probe electron-phonon interactions — a key factor influencing a material’s thermal, electrical, and optical behaviour — which until now have been extremely difficult to measure directly.

“Rather than discovering new spectroscopy techniques by pure accident, we can use theory to justify and inform the design of our experiments and our physical equipment,” said Mingda Li, senior author and associate professor at MIT, in a media statement.

By engineering the interference between nuclear and magnetic interactions during neutron scattering, the team demonstrated that the resulting signal is directly proportional to the electron-phonon coupling strength.

“Being able to directly measure the electron-phonon interaction opens the door to many new possibilities,” said MIT graduate student Artittaya Boonkird.

While the current setup produced a weak signal, the findings lay the groundwork for next-generation experiments at more powerful facilities like Oak Ridge National Laboratory’s proposed Second Target Station. The team sees this as a shift in materials science — using theoretical insights to unlock previously “invisible” properties for a range of advanced technologies, from quantum computing to medical devices.

Continue Reading

Space & Physics

Dormant Black Holes Revealed in Dusty Galaxies Through Star-Shredding Events

Published

on

Image credit: NRAO/AUI/NSF/NASA

In a major discovery, astronomers at MIT, Columbia University, and other institutions have used NASA’s James Webb Space Telescope (JWST) to uncover hidden black holes in dusty galaxies that violently “wake up” only when an unsuspecting star wanders too close.

The new study, published in Astrophysical Journal Letters, marks the first time JWST has captured clear signatures of tidal disruption events (TDEs) — catastrophic episodes where a star is torn apart by a galaxy’s central black hole, emitting a dramatic burst of energy.

“These are the first JWST observations of tidal disruption events, and they look nothing like what we’ve ever seen before,” said lead author Megan Masterson, a graduate student at MIT’s Kavli Institute for Astrophysics and Space Research. “We’ve learned these are indeed powered by black hole accretion, and they don’t look like environments around normal active black holes.”

Until now, nearly all TDEs detected since the 1990s were found in relatively dust-free galaxies using X-ray or optical telescopes. However, researchers suspected many more events remained hidden behind thick clouds of galactic dust. JWST’s powerful infrared vision has finally confirmed their hunch.

By analyzing four galaxies previously flagged as likely TDE candidates, the team detected distinct infrared fingerprints of black hole accretion — the process of material spiraling into a black hole, producing intense radiation. These signatures, invisible to optical telescopes, revealed that all four events stemmed not from persistently active black holes but dormant ones, roused only when a passing star came too close.

“There’s nothing else in the universe that can excite this gas to these energies, except for black hole accretion,” Masterson noted.

Among the four signals studied was the closest TDE ever detected, located 130 million light-years away. Another showed an initial optical flash that scientists had earlier suspected to be a supernova. JWST’s readings helped clarify the true cause.

“These four signals were as close as we could get to a sure thing,” said Masterson. “But the JWST data helped us say definitively these are bonafide TDEs.”

To determine whether the central black holes were inherently active or momentarily triggered by a star’s disruption, the team also mapped the dust patterns around them. Unlike the thick, donut-shaped clouds typical of active galaxies, these dusty environments appeared markedly different — further confirming the black holes were usually dormant.

“Together, these observations say the only thing these flares could be are TDEs,” Masterson said in a media statement.

The findings not only validate JWST’s unprecedented ability to study hidden cosmic phenomena but also open new pathways for understanding black holes that lurk quietly in dusty galactic centers — until they strike.

With future observations planned using JWST, NEOWISE, and other infrared tools, the team hopes to catalog many more such events. These cosmic feeding frenzies, they say, could unlock key clues about black hole mass, spin, and the very nature of their environments.

“The actual process of a black hole gobbling down all that stellar material takes a long time,” Masterson added. “And hopefully we can start to probe how long that process takes and what that environment looks like. No one knows because we just started discovering and studying these events.”

Continue Reading

Trending