Space & Physics
Odyssey’s touch down confirmed as America returns to the Moon
Odyssey is just the first of many robotic missions to set the stage for the first American man and woman to set foot on the Moon since the Apollo.
In a historic first, Intuitive Machines have become the first private company to ever soft-land on the Moon ever. It’s also the first American soft-landing on the Moon, since Apollo 17 in 1972.
The world watched with baited breath, as the US-based company’s Odyssey lander (also designated as IM-1) made a soft-landing at or 6:23 p.m. ET on Thursday (or 4:53 a.m. IST, Friday) near the lunar south pole.
Intuitive Machines tweeted on X quoting their mission director, Tim Crain, confirming the touchdown – “Odyssey has a new home.”
It wasn’t all smooth for Odyssey though, since the lander apparently stopped communications right after landing. It took some careful troubleshooting from ground teams at Intuitive Machines before confirming that the lander was ‘upright’. Intuitive Machines said they were working to downlink the first images of the lunar surface.
The landing marks the second, since India’s Chandrayaan-3 became the first to successfully soft-land at the lunar south pole – which is thought to have frozen water underneath the surface.
A previous attempt by Astrobotics’ Peregrine mission to soft-land similarly failed after a faulty booster, abandoning the mission and ended up burning away on re-entry in the earth’s atmosphere.
“What a triumph! Odysseus has taken the moon,” said Bill Nelson, the NASA Administrator in a video message aired right after confirmation of touchdown. “This feat is a giant leap forward for all of humanity. Stay tuned!”
Intuitive Machines CEO Steve Altemus lent his congratulations to the engineers. “I know this was a nail-biter, but we are on the surface and we are transmitting,” he said. “Welcome to the moon.”
It was launched aboard SpaceX’s Falcon 9 on February 15th last week, from NASA’s Kennedy Space Center in Florida, US.
Odyssey launched aboard SpaceX’s Falcon 9 from NASA’s Cape Canaveral at Florida, US. Credit: Kim Shiflett / NASA
Odyssey landed at a cratered terrain close to a 5 km-high mountain complex known as Malapert.
The Odyssey mission will be the first of a series of robotic exploration missions, contracted under NASA’s Commercial Lunar Payload Services (CLPS) program.
The buildup towards Artemis
The Odyssey carries 12 instruments – 6 each from NASA and Intuitive Machine’s other clients.
Other clients include a telescope sent by the International Lunar Observatory Association that will snap pictures of the Milky Way galaxy, using clear night skies for astronomy.
Also, a box attached to the lander carries some 125 small stainless steel balls, made by the American artist Jeff Koons, depicting the various phases of the moon.
Moreover, finally, there’s an on-board camera that will snap pictures of the lander’s descent to the surface, built by students from Embry-Riddle Aeronautical University, US.
NASA instrumentation include: a laser retro-reflector, a camera to analyze lunar dust plumes generated as the lunar soft-lands, a communication device, a low-frequency radio receiver to detect radio emissions from the Sun, Earth, Jupiter and the lunar regolith, and finally two sensors to gauge fuel levels and speed of descent during soft-landing.
All of this cost NASA some $118 million, aimed at gathering data about soft-landing in advance for future landings.
Gene Cernan driving the Lunar Roving Vehicle during Apollo 17, Credit: NASA / Unsplash
The CLPS missions build towards the Artemis missions that the new US lunar program is designed for. It would mark the ultimate return to the Moon since Apollo 17 in 1972. Artemis-3 will see the first man and woman to walk on the Moon – tentatively in 2026.
Regarding the Artemis missions, NASA stated that they have far-reaching ambition even to explore our solar system with in-situ resources. This means, excavating water ice from underneath the lunar south pole surface and generating fuel.
In fact, that feat may be demonstrated far earlier than you might think. Intuitive Machines is set to g to the Moon again in March this year, with a drill to dig out that water ice.
Until then, all eyes and ears will be to know what Odyssey finally managed to learn about this new unexplored terrain.
Space & Physics
Study Shows Single Qubit Can Outperform Classical Computers in Real-World Communication Tasks
This new research, however, offers compelling evidence of quantum systems’ power in a real-world scenario
Breakthrough Study Shows Quantum Systems Can Outperform Classical Computers in Real-World Communication Tasks
A new study from the S. N. Bose National Centre for Basic Sciences in West Bengal, India, in collaboration with international teams has revealed that even the simplest quantum system, a single qubit, can surpass its classical counterpart in certain communication tasks. This discovery reshapes our understanding of quantum computing and hints at a future where quantum technologies could solve problems that classical computers, even with ample resources, cannot.
Quantum systems have long been seen as the next frontier in computing, with the potential to revolutionize technology. However, proving their superiority over classical systems has been a challenge, as experiments are complex, and limitations often arise that suggest quantum advantage might not be as accessible as once thought. This new research, however, offers compelling evidence of quantum systems’ power in a real-world scenario.
Professor Manik Banik and his team at the S. N. Bose Centre, alongside researchers from the Henan Key Laboratory of Quantum Information and Cryptography, Laboratoire d’Information Quantique, University libre de Bruxelles, and ICFO—the Barcelona Institute of Science and Technology, have demonstrated that a single qubit can outperform a classical bit in a communication task, even when no extra resources, like shared randomness, are available. The theoretical study, published in Quantum, was accompanied by an experimental demonstration featured as an Editors’ Suggestion in Physical Review Letters.
The team’s innovative approach involved developing a photonic quantum processor and a novel tool called a variational triangular polarimeter
The key to this breakthrough lies in the way quantum and classical systems handle communication. Classical communication often relies on shared resources, such as pre-agreed random numbers, to function efficiently. Without these shared resources, the task becomes more challenging. In contrast, the researchers found that a qubit does not require such help and can still outperform a classical bit under the same conditions.
The team’s innovative approach involved developing a photonic quantum processor and a novel tool called a variational triangular polarimeter. This device enabled them to measure light polarization with high precision using a technique known as Positive Operator-Valued Measurements (POVM). These measurements play a crucial role in understanding the behavior of quantum systems, particularly under realistic conditions that include noise.
“This result is particularly exciting because it demonstrates a tangible quantum advantage in a realistic communication scenario,” said Professor Banik. “For a long time, quantum advantage was mostly theoretical. Now, we’ve shown that even a single qubit can outperform classical systems, opening up new possibilities for quantum communication and computing.”
This research represents more than just an academic milestone; it brings us a step closer to a future where quantum technologies could drastically alter how we process and communicate information. As quantum systems continue to develop, this breakthrough makes the divide between quantum and classical computing not only more fascinating but also more attainable. The study also signals that quantum systems may eventually be able to solve problems that classical computers struggle with, even when resources are limited.
With this discovery, the potential for quantum communication and computation is moving from theoretical to practical applications, making the future of quantum technologies look even more promising.
Space & Physics
IIT Kanpur Unveils World’s First BCI-Based Robotic Hand Exoskeleton for Stroke Rehabilitation
The BCI-based robotic hand exoskeleton utilizes a unique closed-loop control system to actively engage the patient’s brain during therapy
The Indian Institute of Technology Kanpur (IITK) has unveiled the world’s first Brain-Computer Interface (BCI)-based Robotic Hand Exoskeleton, a groundbreaking innovation set to revolutionize stroke rehabilitation. This technology promises to accelerate recovery and improve patient outcomes by redefining post-stroke therapy. Developed over 15 years of rigorous research led by Prof. Ashish Dutta from IIT Kanpur’s Department of Mechanical Engineering, the project was supported by India’s Department of Science and Technology (DST), UK India Education and Research Initiative (UKIERI), and the Indian Council of Medical Research (ICMR).
The BCI-based robotic hand exoskeleton utilizes a unique closed-loop control system to actively engage the patient’s brain during therapy. It integrates three key components: a Brain-Computer Interface that captures EEG signals from the motor cortex to detect the patient’s intent to move, a robotic hand exoskeleton that assists with therapeutic hand movements, and software that synchronizes brain signals with the exoskeleton for real-time feedback. This coordination helps foster continuous brain engagement, leading to faster and more effective recovery.
“Stroke recovery is a long and often uncertain process. Our device bridges the gap between physical therapy, brain engagement, and visual feedback creating a closed-loop control system that activates brain plasticity, which is the brain’s ability to change its structure and function in response to stimuli,” said Prof. Ashish Dutta. “This is especially significant for patients whose recovery has plateaued, as it offers renewed hope for further improvement and regaining mobility. With promising results in both India and the UK, we are optimistic that this device will make a significant impact in the field of neurorehabilitation.”
Traditional stroke recovery often faces challenges, especially when motor impairments stem from damage to the motor cortex. Conventional physiotherapy methods may fall short due to limited brain involvement. The new device addresses this gap by linking brain activity with physical movement. During therapy, patients are guided on-screen to perform hand movements, such as opening or closing their fist, while EEG signals from the brain and EMG signals from the muscles are used to activate the robotic exoskeleton in an assist-as-required mode. This synchronization ensures the brain, muscles, and visual engagement work together, improving recovery outcomes.
Pilot clinical trials, conducted in collaboration with Regency Hospital in India and the University of Ulster in the UK, have yielded impressive results. Remarkably, eight patients—four in India and four in the UK—who had reached a recovery plateau one or two years post-stroke achieved full recovery through the BCI-based robotic therapy. The device’s active engagement of the brain during therapy has proven to lead to faster and more comprehensive recovery compared to traditional physiotherapy.
While stroke recovery is typically most effective within the first six to twelve months, this innovative device has demonstrated its ability to facilitate recovery even beyond this critical period. With large-scale clinical trials underway at Apollo Hospitals in India, the device is expected to be commercially available within three to five years, offering new hope for stroke patients worldwide.
Space & Physics
Obituary: R. Chidambaram, Eminent Physicist and Architect of India’s Nuclear Program
Rajagopala Chidambaram (1936–2025), a man whose work shaped the future of modern India, will always be remembered as the chief architect of India’s nuclear journey.
Rajagopala Chidambaram, a world-class physicist and the chief architect of India’s nuclear program, passed away on January 4, 2025, at the age of 88. Renowned for his unparalleled contributions to India’s nuclear defense and energy security, Chidambaram leaves a profound legacy in both the scientific community and the nation’s strategic defense apparatus.
Born on November 11, 1936, in India, Dr. Chidambaram was an alumnus of Presidency College, Chennai, Tamil Nadu, and the Indian Institute of Science, Bengaluru, Karnataka. His academic background, coupled with his innate curiosity and vision, led him to become one of India’s foremost scientific minds. Throughout his illustrious career, Dr. Chidambaram played an instrumental role in shaping India’s nuclear capabilities, overseeing both the Pokhran-I (1974) and Pokhran-II (1998) nuclear tests, which cemented India’s position as a nuclear power on the world stage.
As a physicist, Dr. Chidambaram’s groundbreaking research in high-pressure physics, crystallography, and materials science greatly advanced the understanding of these fields. His pioneering work laid the foundation for modern materials science research in India, contributing to the nation’s scientific progress in multiple areas. His expertise in these complex disciplines not only bolstered India’s nuclear research but also advanced its technological prowess.
In addition to his work in nuclear weapons development, Dr. Chidambaram made significant strides in nuclear energy, ensuring that India remained at the forefront of scientific and technological advancements. As Director of the Bhabha Atomic Research Centre (BARC) and later as Chairman of the Atomic Energy Commission of India, he was integral to India’s peaceful nuclear energy initiatives. As Principal Scientific Adviser to the Government of India, Dr. Chidambaram guided national policies on defense, energy, and nuclear research, shaping the future of India’s scientific endeavors.
He was a vital member of the team that conducted India’s first nuclear test, Smiling Buddha, at Pokhran in 1974. His leadership during the Pokhran-II tests in 1998, which confirmed India’s nuclear deterrent, was a defining moment in the nation’s history. Chidambaram’s steadfast commitment to India’s defense and scientific advancement earned him respect both at home and abroad.
A visionary leader, Dr. Chidambaram believed in the power of science and technology to drive national development. His efforts were instrumental in championing key initiatives in energy, healthcare, and strategic self-reliance. He steered numerous projects that significantly advanced India’s science and technology landscape. Notably, he played a central role in the indigenous development of supercomputers and was the driving force behind the conceptualization of the National Knowledge Network, which connected research and educational institutions across India.
Dr. Chidambaram was also an ardent advocate for the application of science and technology to improve societal conditions. He established the Rural Technology Action Groups and the Society for Electronic Transactions and Security, among other programs. His emphasis on “Coherent Synergy” in India’s scientific efforts helped foster collaboration across various disciplines, accelerating the country’s scientific growth.
On the global stage, Dr. Chidambaram served as the Chairman of the Board of Governors of the International Atomic Energy Agency (IAEA) in 1994-1995 and contributed to several high-level international nuclear discussions. His expertise was sought worldwide, and in 2008, he was appointed to the Commission of Eminent Persons by the IAEA to assess the agency’s role in nuclear governance.
He was a vital member of the team that conducted India’s first nuclear test, Smiling Buddha, at Pokhran in 1974
In recognition of his exceptional contributions to science and national development, Dr. Chidambaram received several prestigious accolades, including the Padma Shri in 1975 and the Padma Vibhushan in 1999. He was also awarded honorary doctorates from several universities and was a fellow of several eminent Indian and international scientific academies.
Dr. Chidambaram’s passing marks the end of an era for India’s nuclear program and the global scientific community. His legacy as a scientist, visionary leader, and architect of India’s nuclear journey will continue to inspire future generations. His contributions to national security, energy, and technological innovation have left an indelible mark on India’s scientific and strategic landscape.
Rajagopala Chidambaram’s profound impact on India’s nuclear and scientific trajectory will be remembered for generations to come. His work in advancing both national defense and the peaceful use of nuclear energy stands as a testament to his vision of a self-reliant, scientifically empowered India.
“Deeply saddened by the demise of Dr Rajagopala Chidambaram. He was one of the key architects of India’s nuclear programme and made ground-breaking contributions in strengthening India’s scientific and strategic capabilities. He will be remembered with gratitude by the whole nation and his efforts will inspire generations to come,” Prime Minister Narendra Modi wrote on X.
Dr. Ajit Kumar Mohanty, Secretary, Department of Atomic Energy, in a statement issued, said, “Dr. Chidambaram was a doyen of science and technology whose contributions furthered India’s nuclear prowess and strategic self-reliance. His loss is an irreparable one for the scientific community and the nation.”
-
Space & Physics5 months ago
Bubbles observed moving on a star for the first time
-
Learning & Teaching6 months ago
India’s Premier Universities Ranked: Indian Institute of Science tops the list
-
Interviews3 months ago
Memory Formation Unveiled: An Interview with Sajikumar Sreedharan
-
Learning & Teaching6 months ago
IIT Madras retains title as India’s top higher education institute
-
EDUNEWS & VIEWS3 months ago
India: Big Science in the 20th century and beyond
-
Society5 months ago
Repurposed antidepressant shows promise as cost-effective treatment for breast cancer
-
The Sciences5 months ago
Researchers using mushrooms to clean contaminated water
-
Space & Physics4 months ago
Nobel laureates in Physics recognized for contributions to Machine Learning
Pingback: ഇതാണ് ആദ്യമായി ചന്ദ്രനില് കാലുകുത്തിയ സ്വകാര്യ കമ്പനി - THE PROFIT