Connect with us

Health

New Gene Therapy Approach Offers Precision in Treating Genetic Disorders

This innovation could pave the way for safer, more effective gene therapies for conditions like Fragile X syndrome and Friedreich’s ataxia.

Published

on

 Credit: National Institutes of Health/MIT News

Researchers at MIT have made a significant advancement in gene therapy, offering new hope for treating genetic diseases caused by a missing or defective gene. For years, scientists have pursued gene therapy as a potential cure for a range of monogenic diseases, where a single defective gene causes the disorder. However, the challenge has always been controlling how much of the therapeutic gene is expressed in target cells—too little expression means the therapy won’t work, while too much could result in harmful side effects.

In a study published in Cell Systems, MIT engineers have developed a system that delivers precise control over gene expression levels. Their method, called the ComMAND circuit (Compact microRNA-mediated Attenuator of Noise and Dosage), uses a novel feedback mechanism to regulate the amount of gene product produced in cells. This innovation could pave the way for safer, more effective gene therapies for conditions like Fragile X syndrome and Friedreich’s ataxia.

Led by MIT graduate student Kasey Love and senior author Katie Galloway, a professor in biomedical and chemical engineering, the research focuses on a special type of genetic control circuit known as an incoherent feedforward loop (IFFL). The circuit works by simultaneously activating both the target gene and a microRNA that suppresses the gene’s expression. This self-regulation helps keep gene expression at optimal levels—enough to be effective, but not so much as to cause toxicity.

“Gene supplementation can solve many monogenic disorders if we can control the therapy precisely,” explains Galloway. The team demonstrated this technique by targeting genes associated with Fragile X syndrome and Friedreich’s ataxia—both of which result in neurological and developmental issues. They successfully fine-tuned gene expression to levels that were eight times higher than normal, avoiding the excessive expression seen in earlier gene therapies that could have harmful consequences.

The key advantage of the ComMAND circuit is its compact design, which allows it to be delivered using common viral vectors like lentiviruses or adeno-associated viruses—the same delivery systems used in current gene therapy treatments. This simplicity improves the manufacturability and scalability of the therapy.

While the researchers have demonstrated success in human cells, they acknowledge that further tests in animal models are needed to fine-tune the system for clinical use. They hope this technology could eventually benefit patients with a range of genetic disorders, including muscular dystrophy, spinal muscular atrophy, and Rett syndrome.

“Despite the small patient populations for many of these rare diseases, we are working to develop tools that are robust enough for widespread use,” says Galloway, emphasizing the importance of such innovations in addressing diseases that often lack funding and research attention due to their rarity.

The breakthrough is a promising step toward making gene therapy not just a theoretical cure but a reliable, safe treatment option for genetic disorders, with potential applications that could transform the landscape of precision medicine in the years to come.

Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *

Health

How a South African Hospital Team Pioneered the World’s First AI-Powered Cancer Treatment Revolution

Digital Healing: How Bloemfontein Became Ground Zero for the AI Cancer Treatment Revolution

Published

on

Illustrative image for representative purpose/EdPublica

The University of the Free State (UFS), South Africa, and Universitas Academic Hospital have achieved a global healthcare milestone by becoming the first clinical site worldwide to successfully integrate artificial intelligence into cancer treatment planning, marking a transformative advancement in oncology care, according to a statement issued by UFS.

AI implementation

The Departments of Medical Physics and Oncology at UFS, in partnership with Universitas Academic Hospital, have implemented the Radiation Planning Assistant (RPA), a sophisticated web-based AI platform developed by MD Anderson Cancer Center in Houston, Texas. This pioneering initiative has already treated nearly 50 patients, positioning the Bloemfontein-based teams as global leaders in the clinical application of AI in radiotherapy.

Under the leadership of Dr. William Shaw, Senior Lecturer and Deputy Manager in the Department of Medical Physics, the institution has built a robust academic partnership with Professor Laurence Court and his team at MD Anderson Cancer Center—a collaboration that is now yielding remarkable real-world results.

“The introduction and clinical integration of the RPA at the UFS and Universitas Hospital represents a major advancement for oncology services—both regionally and nationally,” Dr. Shaw explained. “It signifies the transition from research collaboration to real-world application, where artificial intelligence is being used to improve access to safe, high-quality cancer care.”

Revolutionizing treatment planning

The RPA technology addresses one of the most time-consuming aspects of cancer care: creating patient-specific radiation treatment plans. The cloud-based platform automates critical components of the treatment planning process, enabling consistent production of high-quality radiotherapy plans while reducing demands on specialized clinical staff.

Dr. Shaw described the streamlined process: “The process begins with the acquisition of a planning CT scan, which serves as the sole imaging input to the RPA. Once the CT dataset has been captured, it is uploaded to the RPA platform via a secure web interface.”

The system uses advanced machine learning algorithms to automatically identify and delineate both tumour volumes and critical normal tissues. Following the completion of the contouring process, the platform automatically generates a comprehensive radiotherapy treatment plan.

Expanding treatment applications

Initially implemented for cervix cancer treatment—representing the largest proportion of radiotherapy patients at the institution—the RPA has since expanded to encompass breast cancer, head and neck cancers, and primary brain tumors. With ongoing institutional support, the system shows significant promise for broader application across nearly all major tumor types treated with external beam radiotherapy.

Professor Vasu Reddy, Deputy Vice-Chancellor for Research and Internationalisation at UFS, praised the achievement: “We extend our congratulations to our colleagues for their exemplary collaborative achievements. Your pioneering work represents the transformative power of multidisciplinary research in advancing medical science and improving patient outcomes.”

Immediate patient benefits

The technology delivers immediate, meaningful improvements for cancer patients by enabling faster access to well-constructed, evidence-based treatment plans reviewed and refined by experts. This translates to more timely care, fewer unplanned treatment interruptions, and improved protection of normal tissues, resulting in fewer side effects and better overall outcomes.

“Our aim is to use artificial intelligence not as a shortcut, but as a tool to standardize, scale, and improve cancer care in places where the need is greatest,” Dr. Shaw emphasized. “The RPA enhances the quality, consistency, and timeliness of cancer treatment in radiotherapy settings—particularly in environments where clinical capacity is limited.”

International expansion

The success in Bloemfontein serves as a model for broader health system innovation, providing a foundation for the safe, phased rollout of similar systems in other provinces. Professor Court has already extended access to the RPA to other radiotherapy centers in South Africa, with expansion to additional countries planned for the near future.

The Department of Oncology, led by Professor Alicia Sherriff, has joined the initiative as an active clinical partner, establishing a multi-disciplinary collaboration that lays the foundation for further research and innovation at the intersection of medical physics, oncology, and data science.

Advanced treatment techniques

Beyond external beam radiotherapy, the UFS and Universitas teams are advancing the use of interstitial brachytherapy for cervix cancer. While not the first globally to implement this specialized technique, the Bloemfontein team ranks among the earliest adopters on the African continent, helping expand access to this advanced modality where it’s most needed.

Future vision

This work received support from the Nuclear Technologies in Medicine and the Biosciences Initiative (NTeMBI), a national technology platform developed and managed by the South African Nuclear Energy Corporation (Necsa) and funded by the Technology Innovation Agency (TIA).

Dr. Shaw’s team has played a central role in developing safe, reliable clinical processes to integrate AI tools like the RPA into daily practice, ensuring that automation enhances rather than replaces professional expertise.

Professor Reddy outlined the broader vision, “The future we are heading towards is one where human innovation and digital technologies work together to elevate the standard of care, rather than replace humanity in medicine. It is encouraging to see how our colleagues are internationalizing our footprint, together with machine precision to enhance detection, personalize treatment and, perhaps importantly, empowering clinicians with data-driven insights for patient care.”

This innovation represents a significant step forward for cancer care in South Africa and demonstrates how international partnerships can bring cutting-edge technologies to healthcare frontlines, making them work effectively in real clinics for real patients. As cancer incidence rises across low- and middle-income countries, the leadership shown by the UFS and Universitas teams offers a compelling model for how academic medical centers can respond with agility, scientific rigor, and global solidarity.

Edited by Chris Jose

Continue Reading

Health

Researchers Develop Low-Cost Sensor for Real-Time Detection of Toxic Sulfur Dioxide Gas

Sulfur dioxide, a toxic air pollutant primarily released from vehicle exhaust and industrial processes, is notorious for triggering respiratory irritation, asthma attacks, and long-term lung damage.

Published

on

In a significant breakthrough for environmental monitoring and public health, scientists from the Centre for Nano and Soft Matter Sciences (CeNS), Bengaluru, India, have developed an affordable and highly sensitive sensor capable of detecting sulfur dioxide (SO₂) gas at extremely low concentrations.

Sulfur dioxide, a toxic air pollutant primarily released from vehicle exhaust and industrial processes, is notorious for triggering respiratory irritation, asthma attacks, and long-term lung damage. Monitoring its presence in real time is essential, but existing technologies are often expensive, power-hungry, or ineffective at detecting the gas at trace levels.

To address this gap, the CeNS team, under the leadership of Dr. S. Angappane, has engineered a novel sensor by combining two metal oxides — nickel oxide (NiO) and neodymium nickelate (NdNiO₃). NiO serves as the receptor that captures SO₂ molecules, while NdNiO₃ acts as a transducer that converts the chemical interaction into an electrical signal. This innovative design enables the sensor to detect SO₂ at concentrations as low as 320 parts per billion (ppb), outperforming many commercial alternatives.

Speaking about the development, Dr. Angappane said in a media statement, “This sensor system not only advances the sensitivity benchmark but also brings real-time gas monitoring within reach for a wider range of users. It demonstrates how smart materials can provide practical solutions for real-world environmental challenges.”

Threshold-triggered sensor response in a) Safe state, b) Warning state, and c) Danger state. Image credit: PIB

The CeNS team has also built a portable prototype incorporating the sensor. It features a user-friendly threshold-triggered alert system with color-coded indicators: green for safe levels, yellow for warning, and red for danger. This visual approach ensures that even non-specialist users can understand and respond to pollution risks instantly. Its compact size and lightweight design make it ideal for deployment in industrial zones, urban neighborhoods, and enclosed environments requiring continuous air quality surveillance.

The sensor system was conceptualized and designed by Mr. Vishnu G Nath, with key contributions from Dr. Shalini Tomar, Mr. Nikhil N. Rao, Dr. Muhammed Safeer Naduvil Kovilakath, Dr. Neena S. John, Dr. Satadeep Bhattacharjee, and Prof. Seung-Cheol Lee. The research findings were recently published in the journal Small.

With this innovation, CeNS reinforces the role of advanced materials science in developing cost-effective technologies that protect both public health and the environment.

Continue Reading

Health

Researchers Unveil 50-Cent DNA Sensors That Could Revolutionize Disease Diagnosis

The innovation lies in a low-cost electrochemical sensor stabilized with a polymer coating, which allows the device to be stored for months at high temperatures and used far from traditional lab settings

Published

on

Credit: Courtesy of the researchers; edited by MIT News

In a breakthrough that could make life-saving diagnostics accessible to millions, MIT researchers have developed a disposable, DNA-coated sensor capable of detecting diseases like cancer, HIV, and influenza — all for just 50 cents. The innovation lies in a low-cost electrochemical sensor stabilized with a polymer coating, which allows the device to be stored for months at high temperatures and used far from traditional lab settings.

At the heart of this sensor is a CRISPR-based enzyme system. When the sensor detects a target disease gene, the enzyme — acting like a molecular lawnmower — begins to shred DNA on the electrode, disrupting the electric signal and indicating a positive result.

“Our focus is on diagnostics that many people have limited access to, and our goal is to create a point-of-use sensor,” said Ariel Furst, MIT chemical engineering professor and senior author of the study, in a media statement. “People wouldn’t even need to be in a clinic to use it. You could do it at home.”

Previously, such sensors faced a major hurdle: the DNA coating degraded rapidly, requiring immediate use and refrigerated storage. Furst’s team overcame this by using polyvinyl alcohol (PVA) — a cheap and widely available polymer — to form a protective film over the DNA, significantly extending shelf life.

The sensors were tested to successfully detect PCA3, a prostate cancer biomarker found in urine, even after two months of storage at 150°F. The technology builds on Furst’s earlier work that enabled detection of HIV and HPV genetic material using similar CRISPR-based methods.

“This is the same core technology used in glucose meters, but adapted with programmable DNA,” said lead author Xingcheng Zhou, an MIT graduate student. “It’s inexpensive, portable, and extremely versatile.”

The team now aims to expand testing for other infectious and emerging diseases. They’ve been accepted into MIT’s delta v venture accelerator, signaling commercial interest and real-world application potential. The ability to ship sensors without refrigeration could be transformative for low-resource and remote settings.

“Our limitation before was that we had to make the sensors on site,” added Furst. “Now that we can protect them, we can ship them. That allows us to access a lot more rugged or non-ideal environments for testing.”

With further development, these pocket-sized DNA sensors could redefine early disease detection — from rural clinics to living rooms.

Continue Reading

Trending