Connect with us

Space & Physics

What brought carbon to Earth

This marks the first time a complex form of carbon essential for life on Earth has been observed outside the solar system. To learn more about the significance of this discovery, EdPublica interviewed the researchers behind the study– Gabi Wenzel, Ilsa Cooke, and Brett McGuire, who shared their insights on the implications of pyrene’s presence in space and its potential impact on our understanding of star and planet formation

Dipin Damodharan

Published

on

The findings suggest pyrene may have been the source of much of the carbon in our solar system. “It’s an almost unbelievable sink of carbon,” says Brett McGuire, right, standing with lead author of the study Gabi Wenzel. Credits: Photo: Bryce Vickmark

A team led by researchers at MIT has detected pyrene, a complex carbon-containing molecule, in a distant interstellar cloud. This finding opens new avenues for understanding the chemical origins of our solar system. Pyrene, a type of polycyclic aromatic hydrocarbon (PAH), was found in a molecular cloud similar to the one from which our solar system formed.

This marks the first time a complex form of carbon essential for life on Earth has been observed outside the solar system. Its discovery sheds light on how the compounds necessary for life could originate in space. The team detected pyrene in
a star-forming region known as the Taurus Molecular Cloud, located 430 light-years away, making it one of the closest such clouds to Earth.

This discovery also aligns with recent findings from the asteroid Ryugu, suggesting that pyrene may have played a key role in the carbon composition of the early solar system. To learn more about the significance of this discovery, EdPublica interviewed the researchers behind the study– Gabi Wenzel, Ilsa Cooke, and Brett McGuire, who shared their insights on the implications of pyrene’s presence in space and its potential impact on our understanding of star and planet formation. Brett McGuire is an assistant professor of chemistry at MIT, Ilsa Cooke is an assistant professor of chemistry at the University of British Columbia, and Gabi Wenzel is a postdoctoral researcher in McGuire’s group at MIT.

Below, the team responds to questions from EdPublica Editor Dipin Damodharan about this unexpected and exciting discovery.

‘Pyrene could be a major source of carbon in our solar system’

Q: How does the discovery of pyrene in TMC-1 enhance our understanding of the chemical inventory that contributed to the formation of our solar system?

Gabi Wenzel:

Stars much like our own sun are born from dense molecular clouds. The discovery of pyrene in a molecular cloud called TMC-1, one that might be very similar to our sun’s natal cloud and which will go on to form a star of its own, significantly enhances our understanding of the chemical inventory that contributed to the formation of our own solar system. As a polycyclic aromatic hydrocarbon (PAH), pyrene is one of the most complex organic molecules found in early molecular clouds, suggesting that the building blocks of organic matter were available in the environments where stars and their orbiting (exo)planets form.

“One of the big questions in star and planet formation is: How much of the chemical inventory from that early molecular cloud is inherited and forms the base components of the solar system? What we’re looking at is the start and the end, and they’re showing the same thing.” McGuire says. Credits:Photo: Bryce Vickmark

This discovery sheds light on the chemical processes occurring in interstellar space, including gas-phase and surface reactions on dust grains, which are crucial for the evolution of organic chemistry. This further supports the notion that the primordial materials of our solar system contained a diverse range of organic compounds, providing insights into the potential for prebiotic chemistry on a young Earth and planetesimals.

Q: What specific challenges did you face in detecting pyrene, given that it is invisible to traditional radio astronomy methods, and how did the use of cyanopyrene help overcome these challenges?

Gabi Wenzel:

Pyrene, a fully symmetric PAH, does not possess a permanent electric dipole moment and hence is invisible in radio astronomical observations or rotational spectrometers in the laboratory. The CN radical is highly abundant in the cold and dark molecular cloud TMC-1, an environment that is about 10 K cold and in which you’d assume little chemistry to happen. However, earlier experimental works have shown that the CN addition (followed by hydrogen abstraction) to ringed hydrocarbon species such as benzene and toluene at low temperatures is a barrierless process.

Adding a CN (nitrile) group to a hydrocarbon will drastically increase its permanent electric dipole moment and so allow rotational transitions. Indeed, several CN-functionalized species have been detected in TMC-1 and other sources, among which the CN-substituted benzene (cyanobenzene or benzonitrile) and other smaller PAHs, with cyanopyrene being the largest molecule found via radio astronomy to date, allowing us to infer the presence of pyrene itself.

Q: Can you elaborate on what it means for our understanding of carbon sources in the solar system that pyrene is found in both TMC-1 and asteroid Ryugu?

Ilsa Cooke:

TMC-1 is a famous example of a cold molecular cloud, one of the earliest stages of star and planet formation, while asteroids like Ryugu represent snapshots of later stages in the formation of solar systems. Asteroids are formed from material in the solar nebula that was inherited from the molecular cloud stage. Our radio observations of TMC-1 let us observe pyrene early on and possibly under conditions where it is first forming. Isotope signatures of the pyrene in Ryugu suggest it was formed in a cold interstellar cloud. From these two unique sets of measurements, we can start to unravel the inheritance of pyrene, and PAHs more generally, from their birth in interstellar space and their journey to new planets. If PAHs can survive all the way from the molecular cloud stage, they may provide planets with an important source of organic carbon.

Dr. Cooke stands in front of the Green Bank Telescope. Credit Dr. Brett McGuire

Q: What are the different formation routes of PAHs that your research suggests, and how do these differ from previous hypotheses about PAH formation in space?

Ilsa Cooke:

Our results, combined with those of Zeichner et al., who measured pyrene in Ryugu, suggest that pyrene may form at low temperatures by “bottom-up” routes in molecular clouds. Previously, PAHs were most commonly associated with formation in high-temperature (ca. 1000 K) environments in the envelopes of dying stars. These stars are thought to eject their PAHs, along with other carbon-rich molecules, into the diffuse interstellar medium.

However, the diffuse medium is a tenuous, harsh environment permeated by ultraviolet photons, and most astrochemists think that small PAHs would not survive their journey through the diffuse medium into dense molecular clouds. So we are still left with a puzzle: does that pyrene that we observe in TMC-1 form there, or was it formed somewhere else but it was able to survive its journey more efficiently than previously thought? If the pyrene is indeed formed within TMC-1, we do not yet know the chemical mechanism. Many possibilities exist, so close collaborations between laboratory astrochemists and observers will be critical to answer this question.

The structure of Pyrene, a polycyclic aromatic hydrocarbon, or PAH. Credit: Wikimedia

Q: What are your plans for investigating larger PAH molecules in TMC-1, and what specific hypotheses are you looking to test with these investigations?

Brett McGuire:

We have a number of other targets lined up – again focusing on PAH structures that should show this special stability demonstrated by pyrene. They present the same experimental challenges, including needing to devise appropriate synthetic routes in the laboratory before collecting their spectra. The major question is just how complex the PAH inventory actually gets at this earliest stage of star formation.

Ball-and-stick model of the pyrene molecule, a polycyclic aromatic hydrocarbon consisting offour fused benzene rings. Credit: Wikimedia

Prior to our work in TMC-1, nearly everything we knew about PAHs came from infrared observations of bulk properties in much warmer and more energetic regions, where PAHs are thought to be much larger. Does the population in TMC-1 look the same as in these regions? Is it at an earlier stage of chemical evolution? And how does this distribution compare to what we see in our own Solar System?

Q: How do your findings about pyrene and PAHs in interstellar clouds influence our broader understanding of organic chemistry in the universe, particularly in relation to the origins of life?

Brett McGuire:

Life as we know it depends on carbon – it is the backbone upon which all our molecular structures are constructed. Yet, the Earth overall is somewhat depleted in carbon relative to what we’d naively expect, and we still don’t fully understand where the carbon we do have came from originally. PAHs in general seem to be a massive reservoir of reactive carbon, and what we are now seeing is that that reservoir is already present at the earliest stages of star-formation. Combined with the evidence from Ryugu, we’re now also seeing indications that the inventory of PAHs, and thus this reservoir of carbon, may actually survive from this dark molecular cloud phase through the formation of a star to be eventually incorporated into the planetary system itself.

Dipin is the Co-founder and Editor-in-Chief of EdPublica. A journalist and editor with over 15 years of experience leading and co-founding both print and digital media outlets, he has written extensively on education, politics, and culture. His work has appeared in global publications such as The Huffington Post, The Himalayan Times, DailyO, Education Insider, and others.

Space & Physics

Indian Scientists Crack the Code to Measure Sun’s Elusive Helium Content

New technique offers breakthrough in understanding solar photosphere’s opacity

Published

on

Illustrated image. For representative purpose

In a significant development, researchers from the Indian Institute of Astrophysics (IIA) have, for the first time, accurately estimated the abundance of Helium in the Sun’s photosphere—its visible surface. This development marks a major advancement in understanding the Sun’s opacity and internal structure.

Until now, determining the amount of Helium in the Sun’s photosphere had remained a challenge due to the absence of distinct Helium spectral lines. Scientists typically relied on indirect methods, such as extrapolations from hotter stars, measurements from the Sun’s outer layers (like the corona and solar wind), or helioseismic data. However, none of these approaches involved direct observation of the photosphere.

The new study, published in the Astrophysical Journal, was carried out by Satyajeet Moharana, B.P. Hema, and Gajendra Pandey. The team applied a unique technique using high-resolution solar spectra to overcome this long-standing challenge.

“Using a novel and consistent technique, whereby the spectral lines of neutral Magnesium and Carbon atoms in conjunction with the lines from the Hydrogenated molecules of these two elements are carefully modelled, we are able to constrain the relative abundance of Helium in the Sun’s photosphere now,” said lead author Satyajeet Moharana, currently a PhD scholar at KASI, South Korea, in a media statement.

The method is based on the principle that the abundance of Helium affects the availability of Hydrogen, which in turn impacts the formation of molecular lines with Magnesium and Carbon. By analyzing the spectral signatures of both atomic and molecular forms of these elements, the researchers were able to deduce the relative abundance of Helium.

“We analysed the lines of neutral Magnesium and the subordinate lines of MgH molecule, and the neutral Carbon and the subordinate lines of CH and C₂ molecules, from the photospheric spectrum of the Sun,” explained B.P. Hema. “The abundance of Magnesium derived from its neutral atomic line must necessarily agree with the abundance derived from its hydrogenated molecular line,” she said, adding that the same logic applies to Carbon.

Gajendra Pandey noted, “In our analysis, we calculated the expected abundance of Mg and C for various values of the relative abundance of Helium to Hydrogen, from the atomic and molecular lines.” The team found that a Helium-to-Hydrogen ratio of 0.1 best matched their observed data—a result in line with long-standing theoretical assumptions and helioseismological studies.

“Our derived He/H ratios are in fair agreement with the results obtained through various helioseismological studies, signifying the reliability and accuracy of our novel technique in determining the solar helium-to-hydrogen ratio,” Hema added.

This pioneering work not only provides clarity on the Sun’s composition but also opens new avenues for accurately studying other Sun-like stars using a similar method.

Continue Reading

Health

Ultrathin Heat-Sensing Film Could Revolutionize Night Vision and Wearable Tech

This breakthrough could pave the way for a new era of ultra-light, compact, and highly sensitive electronic devices, ranging from wearable sensors and flexible computing components to cutting-edge night vision systems

Published

on

In a leap forward for next-generation electronics, engineers at MIT have developed an innovative method to create and peel ultrathin layers of electronic material—akin to flexible, electronic “skins.” This breakthrough could pave the way for a new era of ultra-light, compact, and highly sensitive electronic devices, ranging from wearable sensors and flexible computing components to cutting-edge night vision systems.

As a proof of concept, the MIT team produced a 10-nanometer-thick membrane made from a heat-sensitive material known as pyroelectric film. This ultrathin film is capable of detecting minute changes in temperature and radiation across the far-infrared spectrum—an essential feature for high-performance thermal imaging.

“Reducing both the weight and cost, this film opens the door to lightweight, portable infrared sensors that could even be integrated into eyewear,” said Xinyuan Zhang, graduate student in MIT’s Department of Materials Science and Engineering and the study’s lead author.

Unlike conventional far-infrared sensors that rely on bulky, power-hungry cooling systems to function, MIT’s new film operates efficiently at room temperature. This allows for more compact designs that could transform current technologies, including night-vision goggles, which are often heavy and cumbersome.

The secret to this innovation lies in a surprising discovery: a certain heat-sensitive compound, PMN-PT, could be cleanly separated from its substrate without the need for an intermediate layer. Researchers found that lead atoms within the film acted like microscopic “nonstick” agents, allowing the membrane to lift away seamlessly and remain atomically smooth.

The team, in collaboration with researchers from the University of Wisconsin at Madison and other institutions, used this property to fabricate arrays of ultrathin heat-sensing pixels. These sensors exhibited sensitivity comparable to top-tier night-vision systems—without requiring cryogenic cooling—and showed potential for full-spectrum infrared detection.

“This technology could extend beyond defense and security,” said Zhang. “Its potential uses include autonomous driving in low-visibility conditions, real-time environmental monitoring, and even detecting overheating in semiconductor chips.”

The researchers are now working to integrate the films into practical devices, including lightweight, high-resolution night-vision glasses. They also believe their peeling technique could be applied to other types of ultrathin semiconductors, even those lacking lead, by engineering substrates to replicate the same peel-off effect.

The findings were published in Nature and include contributions from a broad team across MIT, the University of Wisconsin at Madison, Rensselaer Polytechnic Institute, and several other institutions.

Continue Reading

Space & Physics

Astronomers Discover a “Dying” Planet That’s Literally Falling Apart

A distant exoplanet, some 140 light-years from Earth, is making its final stand—and it’s a spectacular, fiery exit.

Published

on

Credits :Image: Jose-Luis Olivares, MIT

Astronomers at MIT have uncovered a small, rocky world that is disintegrating before our very eyes. The planet, known as BD+05 4868 Ab, is orbiting its host star so closely—about 20 times closer than Mercury is to the Sun—that its surface is likely a sea of molten rock. The extreme heat, estimated at 1,600°C (nearly 3,000°F), is causing the planet to shed vast amounts of its outer layers into space.

Using data from NASA’s Transiting Exoplanet Survey Satellite (TESS), the MIT-led team spotted the planet through a telltale dip in starlight. But unlike the predictable shadows caused by typical planets passing in front of their stars, this signal had something else—a long, changing shadow, hinting at a trail of debris.

“The extent of the tail is gargantuan, stretching up to 9 million kilometers long, or roughly half of the planet’s entire orbit,” said Marc Hon, postdoctoral researcher at MIT’s Kavli Institute for Astrophysics and Space Research, in a media statement.

What they found was essentially a rocky comet—except this isn’t a frozen body from the outer solar system. This is a terrestrial planet in a death spiral. According to the team, BD+05 4868 Ab is losing material at a rate comparable to one Mount Everest per orbit. At this pace, the planet could vanish entirely within the next one to two million years.

“We got lucky with catching it exactly when it’s really going away,” said Avi Shporer, a collaborator from the TESS Science Office. “It’s like on its last breath.”

The signal from the planet stood out during routine data analysis. Hon recalls stumbling on the strange pattern by chance: “We weren’t looking for this kind of planet. We were doing the typical planet vetting, and I happened to spot this signal that appeared very unusual.”

That “unusual” signal—fluctuating dips in brightness that lingered longer than expected—suggested not a single compact body, but something more complex. A dusty, mineral-rich trail stretching out like a comet’s tail.

“The shape of the transit is typical of a comet with a long tail,” Hon noted. “Except that it’s unlikely that this tail contains volatile gases and ice as expected from a real comet—these would not survive long at such close proximity to the host star.”

What’s left instead is a dust plume made of vaporized rock—an astonishing sight for astronomers, and a rare one too. Out of nearly 6,000 confirmed exoplanets, only three others like this have ever been found—and all over a decade ago using the Kepler Space Telescope.

“This is a very tiny object, with very weak gravity, so it easily loses a lot of mass, which then further weakens its gravity, so it loses even more mass,” said Shporer. “It’s a runaway process, and it’s only getting worse and worse for the planet.”

Of the known disintegrating worlds, BD+05 4868 Ab is by far the most dramatic. Its host star is also brighter and closer than those of its doomed cousins, making it an ideal target for follow-up observations with NASA’s James Webb Space Telescope (JWST).

“This will be a unique opportunity to directly measure the interior composition of a rocky planet,” Hon said, “which may tell us a lot about the diversity and potential habitability of terrestrial planets outside our solar system.”

With JWST observations set to begin this summer, Hon and his colleagues hope to uncover what elements make up the dusty trail—effectively peering into the planet’s interior as it crumbles into space.

As they continue to scan the skies, the team is keeping a keen eye out for more cosmic casualties like BD+05 4868 Ab.

“Sometimes with the food comes the appetite,” Shporer said. “And we are now trying to initiate the search for exactly these kinds of objects.”

Continue Reading

Trending