Space & Physics
The Story of the World’s Most Underrated Quantum Maestro
As the world celebrates the 131st birth anniversary of S.N. Bose, EdPublica explores the theoretical physicist’s unparalleled contributions to the field of quantum mechanics

It’s 1924, and Satyendra Nath Bose, going by S.N. Bose was a young physicist teaching in Dhaka, then British India. Grappled by an epiphany, he was desperate to have his solution, fixing a logical inconsistency in Planck’s radiation law, get published. He had his eyes on the British Philosophical Magazine, since word could spread to the leading physicists of the time, most if not all in Europe. But the paper was rejected without any explanations offered.
But he wasn’t going to give up just yet. Unrelenting, he sent another sealed envelope with his draft and this time a cover letter again, to Europe. One can imagine months later, Bose breathing out a sigh of relief when he finally got a positive response – from none other than the great man of physics himself – Albert Einstein.
In some ways, Bose and Einstein were similar. Both had no PhDs when they wrote their treatises that brought them into limelight. And Einstein introduced E=mc2 derived from special relativity with little fanfare, so did Bose who didn’t secure a publisher with his groundbreaking work that invented quantum statistics. He produced a novel derivation of the Planck radiation law, from the first principles of quantum theory.

This was a well-known problem that had plagued physicists since Max Planck, the father of quantum physics himself. Einstein himself had struggled time and again, to only have never resolved the problem. But Bose did, and too nonchalantly with a simple derivation from first principles grounded in quantum theory. For those who know some quantum theory, I’m referring to Bose’s profound recognition that the Maxwell-Boltzmann distribution that holds true for ideal gasses, fails for quantum particles. A technical treatment of the problem would reveal that photons, that are particles of light with the same energy and polarization, are indistinguishable from each other, as a result of the Pauli exclusion principle and Heisenberg’s uncertainty principle.
Fascinatingly, last July marked the 100 years since Einstein submitted Bose’s paper, “Planck’s law and the quantum hypothesis” on his behalf to Zeitschrift fur Physik.
Fascinated and moved by what he read, Einstein was magnanimous enough to have Bose’s paper translated in German and published in the journal, Zeitschrift für Physik in Germany the same year. It would be the beginning of a brief, but productive professional collaboration between the two theoretical physicists, that would just open the doors to the quantum world much wider. Fascinatingly, last July marked the 100 years since Einstein submitted Bose’s paper, “Planck’s law and the quantum hypothesis” on his behalf to Zeitschrift fur Physik.
With the benefit of hindsight, Bose’s work was really nothing short of revolutionary for its time. However, a Nobel Committee member, the Swedish Oskar Klein – and theoretical physicist of repute – deemed it a mere advance in applied sciences, rather than a major conceptual advance. With hindsight again, it’s a known fact that Nobel Prizes are handed in for quantum jumps in technical advancements more than ever before. In fact, the 2001 Nobel Prize in Physics went to Carl Wieman, Eric Allin Cornell, and Wolfgang Ketterle for synthesizing the Bose-Einstein condensate, a prediction made actually by Einstein based on Bose’s new statistics. These condensates are created when atoms are cooled to near absolute zero temperature, thus attaining the quantum ground state. Atoms at this state possess some residual energy, or zero-point energy, marking a macroscopic phase transition much like a fourth state of matter in its own right.
Such were the changing times that Bose’s work received much attention gradually. To Bose himself, he was fine without a Nobel, saying, “I have got all the recognition I deserve”. A modest character and gentleman, he resonates a lot with the mental image of a scientist who’s a servant to the scientific discipline itself.
He was awarded the Padma Vibhushan, the highest civilian award by the Government of India in 1954. Institutes have been named in his honour, but despite this, his reputation has little if no mention at all in public discourse.
But what’s more upsetting is that, Bose is still a bit of a stranger in India, where he was born and lived. He studied physics at the Presidency College, Calcutta under the tutelage that saw other great Indian physicists, including Jagdish Chandra Bose and Meghnad Saha. He was awarded the Padma Vibhushan, the highest civilian award by the Government of India in 1954. Institutes have been named in his honour, but despite this, his reputation has little if no mention at all in public discourse.

To his physicists’ peers in his generation and beyond, he was recognized in scientific lexicology. Paul Dirac, the British physicist coined the name ‘bosons’ in Bose’s honor (‘bose-on’). These refer to quantum particles including photons and others with integer quantum spins, a formulation that arose only because of Bose’s invention of quantum statistics. In fact, the media popular, ‘god particle’, the Higgs boson, carries a bit of Bose as much as it does of Peter Higgs who shared the 2013 Nobel Prize in Physics with Francois Euglert for producing the hypothesis.
Space & Physics
MIT Physicists Capture First-Ever Images of Freely Interacting Atoms in Space
The new technique allows scientists to visualize real-time quantum behavior by momentarily freezing atoms in motion and illuminating them with precisely tuned lasers

In an intriguing advancement for quantum physics, MIT researchers have captured the first images of individual atoms freely interacting in space — a feat that until now was only predicted theoretically.
The new imaging technique, developed by a team led by Professor Martin Zwierlein, allows scientists to visualize real-time quantum behavior by momentarily freezing atoms in motion and illuminating them with precisely tuned lasers. Their results, published in Physical Review Letters, reveal how bosons bunch together and fermions pair up in free space — phenomena crucial to understanding superconductivity and other quantum states of matter.
“We are able to see single atoms in these interesting clouds of atoms and what they are doing in relation to each other, which is beautiful,” said Zwierlein in a press statement.
Using their method — called “atom-resolved microscopy” — the team was able to trap atom clouds with a loose laser, briefly immobilize them with a lattice of light, and then image their positions via fluorescence. This approach allowed the researchers to observe quantum behaviors at the level of individual atoms for the first time.
The MIT group directly visualized sodium atoms (bosons) bunching together in a shared quantum wave — a vivid confirmation of the de Broglie wave theory — and lithium atoms (fermions) pairing up despite their natural repulsion, a key mechanism underlying superconductivity.
“This kind of pairing is the basis of a mathematical construction people came up with to explain experiments. But when you see pictures like these, it’s showing in a photograph, an object that was discovered in the mathematical world,” said co-author Richard Fletcher in a press statement.
Two other research teams — one led by Nobel laureate Wolfgang Ketterle at MIT, and another by Tarik Yefsah at École Normale Supérieure — also reported similar quantum imaging breakthroughs in the same journal issue, marking a significant moment in the experimental visualization of quantum mechanics.
The MIT team plans to expand the technique to probe more exotic quantum behaviors, including quantum Hall states. “Now we can verify whether these cartoons of quantum Hall states are actually real,” Zwierlein added. “Because they are pretty bizarre states.”
Space & Physics
Indian Researchers Develop Breakthrough Metal-Free Catalyst for Green Hydrogen Production

In a major scientific breakthrough, researchers at Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bengaluru, India, have developed a novel, cost-effective, metal-free porous organic catalyst that enables efficient hydrogen (H₂) production by harnessing mechanical energy. This innovative work could provide a significant boost to India’s National Green Hydrogen Mission and global efforts toward clean energy.
The team, led by Professor Tapas K. Maji from the Chemistry and Physics of Materials Unit at JNCASR—an autonomous institution under the Department of Science & Technology, Government of India—has designed a donor-acceptor-based covalent-organic framework (COF) that functions as a highly efficient piezocatalyst for water splitting. The findings have been published in the journal Advanced Functional Materials.

“This discovery breaks the traditional notion of solely employing heavy or transition metal-based ferroelectric materials as piezocatalysts for catalyzing water splitting reaction,” said Professor Maji in a press statement.
The COF, constructed using the donor molecule tris(4-aminophenyl)amine (TAPA) and the acceptor molecule pyromellitic dianhydride (PDA), showcases unique ferrielectric (FiE) ordering. Unlike conventional ferroelectric materials, which have limited surface charge and rapidly reach saturation, this FiE structure dramatically enhances the number of charge carriers within the framework’s porous surface. This enables more effective diffusion and interaction of water molecules, resulting in ultra-high hydrogen production yields.
Prof. Umesh V. Waghmare and his team, also at JNCASR, conducted theoretical analyses confirming that the COF’s unusual electronic structure fosters dipolar ordering, leading to lattice instability and FiE behavior. “These FiE dipoles interact with the flexible twisting molecular motion in the material, making them responsive to mechanical pressure,” said Prof. Waghmare. “As a result, the material can generate electron-hole pairs when mechanically stimulated, making it a highly efficient piezocatalyst.”
The research team also includes Ms. Adrija Ghosh, Ms. Surabhi Menon, Dr. Sandip Biswas, and Dr. Anupam Dey from JNCASR, with significant contributions from Dr. Supriya Sahoo and Prof. Ramamoorthy Boomishankar at IISER Pune, and Prof. Jan K. Zaręba from Wrocław University of Science and Technology, Poland.
The innovation offers a promising alternative to traditional oxide-based piezocatalysts and represents a leap forward in the sustainable production of hydrogen fuel. “The utilization of a cost-effective, metal-free system with a high production rate of H2 by harvesting mechanical energy opens up a new route to green H2 based on porous heterogeneous catalysts,” added Prof. Maji.
Space & Physics
Engineers Edge Closer to Practical, Fault-Tolerant Quantum Machines
The findings demonstrate the foundational physics needed to achieve ultra-fast quantum readout, an essential step toward scalable and fault-tolerant quantum systems

In a breakthrough that could accelerate the future of quantum computing, researchers at MIT have demonstrated the strongest nonlinear light-matter coupling ever recorded in a quantum system — a development that may enable quantum operations and measurements in mere nanoseconds.
This leap forward hinges on a novel superconducting circuit design featuring a device called the quarton coupler, invented by lead researcher Yufeng “Bright” Ye, PhD ’24. The technology enables interaction between photons (particles of light that carry quantum information) and artificial atoms (units that store quantum data), which is central to the speed and accuracy of quantum computers.
“Usually, you have to measure results between rounds of error correction, and slow readout can become a bottleneck,” Ye explained. “This could dramatically accelerate progress toward fault-tolerant quantum computing and practical real-world applications.”
Working with senior author Kevin O’Brien, associate professor and principal investigator at MIT’s Research Laboratory of Electronics, the team connected the quarton coupler to two superconducting qubits on a chip. One served as a photon emitter and the other as a storage atom, enabling extremely strong nonlinear interactions — about ten times stronger than previous demonstrations.
This means a quantum processor could potentially perform tenfold faster operations, allowing scientists to run more quantum error corrections during the brief window when qubits remain coherent. Error correction is essential in quantum computing, where fragile quantum states are easily disrupted.
The team’s findings, published in Nature Communications, demonstrate the foundational physics needed to achieve ultra-fast quantum readout, an essential step toward scalable and fault-tolerant quantum systems.
While this remains a proof of concept, researchers are now working to integrate additional electronic components — such as filters — to build practical readout circuits compatible with full-scale quantum systems. The team also reported success in achieving strong matter-matter coupling between qubits, which could further enhance future quantum operations.
“This isn’t the end — it’s the beginning of a new phase,” said O’Brien. “We now have a powerful physical tool, and the next step is engineering it into something that can be part of a real quantum computer.”
As scientists push toward building large-scale quantum processors, innovations like the quarton coupler bring them closer to unlocking new materials, revolutionizing machine learning, and solving problems beyond the reach of today’s fastest supercomputers.
-
Earth2 months ago
How IIT Kanpur is Paving the Way for a Solar-Powered Future in India’s Energy Transition
-
Space & Physics6 months ago
How Shyam Gollakota is revolutionizing mobile systems and healthcare with technology
-
Space & Physics1 month ago
Could dark energy be a trick played by time?
-
Society2 months ago
Starliner crew challenge rhetoric, says they were never “stranded”
-
EDUNEWS & VIEWS5 months ago
“One Nation, One Subscription” is a welcome step, in light of publishers’ apathy
-
Space & Physics4 months ago
Obituary: R. Chidambaram, Eminent Physicist and Architect of India’s Nuclear Program
-
Society6 months ago
Rebranding Bhutan: A case study in transforming identity
-
Know The Scientist6 months ago
Pierre Curie: The precision of a scientific pioneer