Space & Physics
MIT Physicists uncover key Mechanism behind fractional charge in Graphene
In the decades-long history of studying these phenomena, no one has observed a system that naturally leads to such fractional electron effects, according to the researchers.

MIT physicists have made a significant breakthrough in understanding the phenomenon where electrons split into fractions of their usual charge, offering new insights into the behaviour of exotic electronic states in graphene and other two-dimensional materials.
This latest research builds on a discovery earlier this year, when a team led by Assistant Professor Long Ju at MIT reported that electrons in pentalayer graphene—a structure composed of five graphene layers stacked on top of boron nitride—exhibited fractional charge. Remarkably, this behaviour was observed without the application of a magnetic field, challenging prior assumptions.
Previously, scientists knew that under a strong magnetic field, electrons could split into fractions as part of the fractional quantum Hall effect. However, Ju’s findings marked the first time such fractional behaviour occurred in graphene without any magnetic influence, which led to the coining of the “fractional quantum anomalous Hall effect.” Since then, researchers have been eager to uncover how fractional charge could emerge in this unusual system.
MIT professor Senthil Todadri, who led the new study published in Physical Review Letters, offers a critical piece of the puzzle. Through detailed quantum mechanical calculations, Todadri and his team discovered that the electrons in pentalayer graphene form a crystal-like structure, which provides the ideal conditions for fractional electron behavior.
“This is a completely new mechanism,” said Todadri. “In the decades-long history of studying these phenomena, no one has observed a system that naturally leads to such fractional electron effects. It opens the door to all kinds of new experimental possibilities.”
The study, which includes contributions from Zhihuan Dong and former postdoc Adarsh Patri, is part of a wider body of research. Two other teams—one from Johns Hopkins University and another from Harvard University, UC Berkeley, and Lawrence Berkeley National Laboratory—have also reported similar findings in the same journal issue.
Building on “Twistronics” and the Magic-Angle Graphene Discovery
This research builds upon the work of MIT physicist Pablo Jarillo-Herrero and his team, who in 2018 were the first to demonstrate that twisting two sheets of graphene could give rise to novel electronic behaviors. This discovery of “magic-angle graphene” spurred a new field known as “twistronics,” focused on understanding how the interactions between twisted two-dimensional materials could lead to unusual quantum phenomena, such as superconductivity and insulating behavior.
“We quickly realized that these twisted systems could provide the right conditions for fractional electron phenomena to emerge,” said Todadri, who collaborated with Jarillo-Herrero on a 2018 study that theorized such systems might exhibit fractional charge without a magnetic field. “We saw these systems as ideal platforms to study these fractional effects.”
A Surprising Discovery and the New Crystal Model
In September 2023, Todadri received an unexpected call from Ju, who was eager to share data showing fractional charge behavior in pentalayer graphene. This discovery caught Todadri by surprise, as it did not align with his earlier predictions. In his 2018 paper, Todadri had theorized that fractional charge would emerge from a specific twisting of the electron wavefunction, and that this twisting would intensify as more graphene layers were added.
“Initially, we expected the wavefunction to wind five times in pentalayer graphene,” Todadri explained. “But Ju’s experiments showed that it only wound once. This raised a big question—how do we explain what we’re seeing?”
Uncovering the Electron “Crystal”
Todadri and his team revisited their hypothesis and discovered they had overlooked an important factor. The conventional approach in the field had been to treat electrons as independent entities and analyze their quantum properties. However, in the confined, two-dimensional space of pentalayer graphene, electrons are forced to interact with each other, behaving according to their quantum correlations in addition to their natural repulsion.
By incorporating these interelectron interactions into their model, the team was able to match their predictions with the experimental data Ju had obtained. This led them to a crucial realization: the moiré pattern formed by the stacked graphene layers induces a weak electrical potential that forces the electrons to interact and form a crystal-like structure. This electron “crystal” creates a complex pattern of quantum correlations, allowing for the formation of fractional charge.
“The crystal has a whole set of unique properties that differentiate it from ordinary crystals,” said Todadri. “This opens up many exciting avenues for future research. In the short term, our work provides a theoretical foundation for understanding the fractional electron observations in pentalayer graphene and predicting similar phenomena in other systems.”
This new insight paves the way for further exploration into how graphene and other two-dimensional materials might be used to engineer new electronic states, with potential applications in quantum computing and other advanced technologies.
Space & Physics
MIT unveils an ultra-efficient 5G receiver that may supercharge future smart devices
A key innovation lies in the chip’s clever use of a phenomenon called the Miller effect, which allows small capacitors to perform like larger ones

A team of MIT researchers has developed a groundbreaking wireless receiver that could transform the future of Internet of Things (IoT) devices by dramatically improving energy efficiency and resilience to signal interference.
Designed for use in compact, battery-powered smart gadgets—like health monitors, environmental sensors, and industrial trackers—the new chip consumes less than a milliwatt of power and is roughly 30 times more resistant to certain types of interference than conventional receivers.
“This receiver could help expand the capabilities of IoT gadgets,” said Soroush Araei, an electrical engineering graduate student at MIT and lead author of the study, in a media statement. “Devices could become smaller, last longer on a battery, and work more reliably in crowded wireless environments like factory floors or smart cities.”
The chip, recently unveiled at the IEEE Radio Frequency Integrated Circuits Symposium, stands out for its novel use of passive filtering and ultra-small capacitors controlled by tiny switches. These switches require far less power than those typically found in existing IoT receivers.
A key innovation lies in the chip’s clever use of a phenomenon called the Miller effect, which allows small capacitors to perform like larger ones. This means the receiver achieves necessary filtering without relying on bulky components, keeping the circuit size under 0.05 square millimeters.

Traditional IoT receivers rely on fixed-frequency filters to block interference, but next-generation 5G-compatible devices need to operate across wider frequency ranges. The MIT design meets this demand using an innovative on-chip switch-capacitor network that blocks unwanted harmonic interference early in the signal chain—before it gets amplified and digitized.
Another critical breakthrough is a technique called bootstrap clocking, which ensures the miniature switches operate correctly even at a low power supply of just 0.6 volts. This helps maintain reliability without adding complex circuitry or draining battery life.
The chip’s minimalist design—using fewer and smaller components—also reduces signal leakage and manufacturing costs, making it well-suited for mass production.
Looking ahead, the MIT team is exploring ways to run the receiver without any dedicated power source—possibly by harvesting ambient energy from nearby Wi-Fi or Bluetooth signals.
The research was conducted by Araei alongside Mohammad Barzgari, Haibo Yang, and senior author Professor Negar Reiskarimian of MIT’s Microsystems Technology Laboratories.
Society
Ahmedabad Plane Crash: The Science Behind Aircraft Take-Off -Understanding the Physics of Flight
Take-off is one of the most critical phases of flight, relying on the precise orchestration of aerodynamics, propulsion, and control systems. Here’s how it works:

On June 12, 2025, a tragic aviation accident struck Ahmedabad, India when a regional passenger aircraft, Air India flight A1-171, crashed during take-off at Sardar Vallabhbhai Patel International Airport. According to preliminary reports, the incident resulted in over 200 confirmed casualties, including both passengers and crew members, and several others are critically injured. The aviation community and scientific world now turn their eyes not just toward the cause but also toward understanding the complex science behind what should have been a routine take-off.
How Do Aircraft Take Off?
Take-off is one of the most critical phases of flight, relying on the precise orchestration of aerodynamics, propulsion, and control systems. Here’s how it works:
1. Lift and Thrust
To leave the ground, an aircraft must generate lift, a force that counters gravity. This is achieved through the unique shape of the wing, called an airfoil, which creates a pressure difference — higher pressure under the wing and lower pressure above — according to Bernoulli’s Principle and Newton’s Third Law.
Simultaneously, engines provide thrust, propelling the aircraft forward. Most commercial jets use turbofan engines, which accelerate air through turbines to generate power.
2. Critical Speeds
Before takeoff, pilots calculate critical speeds:
- V1 (Decision Speed): The last moment a takeoff can be safely aborted.
- Vr (Rotation Speed): The speed at which the pilot begins to lift the nose.
- V2 (Takeoff Safety Speed): The speed needed to climb safely even if one engine fails.
If anything disrupts this process — like bird strikes, engine failure, or runway obstructions — the results can be catastrophic.

Environmental and Mechanical Challenges
Factors like wind shear, runway surface condition, mechanical integrity, or pilot error can interfere with safe take-off. Investigators will be analyzing these very aspects in the Ahmedabad case.
The Bigger Picture
Take-off accounts for a small fraction of total flight time but is disproportionately associated with accidents — approximately 14% of all aviation accidents occur during take-off or initial climb.
Space & Physics
MIT claims breakthrough in simulating physics of squishy, elastic materials
In a series of experiments, the new solver demonstrated its ability to simulate a diverse array of elastic behaviors, ranging from bouncing geometric shapes to soft, squishy characters

Researchers at MIT claim to have unveiled a novel physics-based simulation method that significantly improves stability and accuracy when modeling elastic materials — a key development for industries spanning animation, engineering, and digital fabrication.
In a series of experiments, the new solver demonstrated its ability to simulate a diverse array of elastic behaviors, ranging from bouncing geometric shapes to soft, squishy characters. Crucially, it maintained important physical properties and remained stable over long periods of time — an area where many existing methods falter.
Other simulation techniques frequently struggled in tests: some became unstable and caused erratic behavior, while others introduced excessive damping that distorted the motion. In contrast, the new method preserved elasticity without compromising reliability.
“Because our method demonstrates more stability, it can give animators more reliability and confidence when simulating anything elastic, whether it’s something from the real world or even something completely imaginary,” Leticia Mattos Da Silva, a graduate student at MIT’s Department of Electrical Engineering and Computer Science, said in a media statement.
Their study, though not yet peer-reviewed or published, will be presented at the August proceedings of the SIGGRAPH conference in Vancouver, Canada.
While the solver does not prioritize speed as aggressively as some tools, it avoids the accuracy and robustness trade-offs often associated with faster methods. It also sidesteps the complexity of nonlinear solvers, which are commonly used in physics-based approaches but are often sensitive and prone to failure.
Looking ahead, the research team aims to reduce computational costs and broaden the solver’s applications. One promising direction is in engineering and fabrication, where accurate elastic simulations could enhance the design of real-world products such as garments, medical devices, and toys.
“We were able to revive an old class of integrators in our work. My guess is there are other examples where researchers can revisit a problem to find a hidden convexity structure that could offer a lot of advantages,” Mattos Da Silva added.
The study opens new possibilities not only for digital content creation but also for practical design fields that rely on predictive simulations of flexible materials.
-
Earth4 months ago
How IIT Kanpur is Paving the Way for a Solar-Powered Future in India’s Energy Transition
-
Space & Physics3 months ago
Could dark energy be a trick played by time?
-
Society4 months ago
Starliner crew challenge rhetoric, says they were never “stranded”
-
Earth2 months ago
122 Forests, 3.2 Million Trees: How One Man Built the World’s Largest Miyawaki Forest
-
Space & Physics3 months ago
Sunita Williams aged less in space due to time dilation
-
Space & Physics6 months ago
Obituary: R. Chidambaram, Eminent Physicist and Architect of India’s Nuclear Program
-
Society4 months ago
Sustainable Farming: The Microgreens Model from Kerala, South India
-
Women In Science3 months ago
Neena Gupta: Shaping the Future of Algebraic Geometry