Connect with us

Space & Physics

Cosmic Dust Reveals Secrets of the Milky Way’s Magnetic Fields

Astronomers uncover how interstellar dust grains align with galactic magnetic fields, revealing new insights into star formation and cosmic evolution.

Published

on

Illustration showing interstellar dust grains aligning with magnetic fields in a star-forming cloud, revealing the hidden forces shaping stars and galaxies.

If you’ve ever watched dust twirl in a sunbeam, you’ve seen how small, ordinary specks can tell a bigger story. Out in space, the Milky Way carries its own version of these floating storytellers: interstellar dust grains. Though each one is only a few micrometres wide and made mostly of silicates and carbon, these cosmic crumbs hold the key to how stars, planets, and even galaxies evolve.

Now, a team of astronomers from the Indian Institute of Astrophysics (IIA), Bengaluru, has made a remarkable breakthrough. They’ve gathered the strongest observational evidence yet showing how these dust grains actually line up with invisible magnetic fields stretching across our galaxy.

The search for alignment

This discovery tackles a mystery that has puzzled scientists for decades. Back in 1949, astronomers noticed that starlight looked “polarized”—its vibrations lined up in a single direction—as it passed through space. The best explanation was that elongated dust grains were somehow aligning themselves with the magnetic fields around them. But exactly how they did it has remained an open question—until now.

A peek into a cosmic cradle

To solve the puzzle, researchers looked deep into a massive star-forming cloud called G34.43+0.24, about 12,000 light-years away. Think of it as a giant celestial nursery, filled with dense regions where baby stars—protostars—are still wrapped inside protective cocoons of dust and gas. Among its most famous residents are MM1, MM2, and MM3, all destined to become massive stars.

Image credit: PIB

Using the powerful POL-2 polarimeter on the James Clerk Maxwell Telescope in Hawaii, the team mapped how dust grains in this stellar nursery twisted and turned in response to magnetic fields. What they found was both surprising and elegant: three different alignment processes working simultaneously in the same cloud.

The three cosmic tricks of dust

Here’s how dust grains behave under different cosmic conditions:

  • Spinning into Place (RAT-A): Dust grains spin up when exposed to uneven radiation, neatly aligning themselves with magnetic fields.
  • Breaking Under Pressure (RAT-D): When blasted by strong radiation from powerful protostars, some grains spin so fast that they break apart, reducing their ability to align.
  • Supercharged Alignment (M-RAT): Under the influence of strong magnetic interactions, grains align even more efficiently, creating stronger polarization signals.

In other words, dust can act like a perfect compass, fall apart under stress, or become super-charged field tracers—depending on what’s happening around them.

Why this matters

Understanding how dust aligns isn’t just about grains themselves. It gives scientists new tools to trace cosmic magnetic fields, which are crucial for almost everything in space—from how new stars are born to the way entire galaxies hold their spiral shapes.

In a media statement, Saikhom Pravash, lead author of the study and a PhD researcher at IIA and Pondicherry University, explained: “This work strengthens the observational support for the well-established popular grain alignment theories and makes a significant contribution to the long-standing quest to understand the exact grain alignment mechanisms.”

Co-author Archana Soam added: “It’s the key to tracing interstellar magnetic fields and exploring their influence on star formation.”

The findings, published in The Astrophysical Journal, don’t just solve a long-standing mystery—they lift the curtain on one of the universe’s hidden forces, transforming tiny specks of dust into powerful cosmic storytellers.

Space & Physics

MIT Pioneers Real-Time Observation of Unconventional Superconductivity in Magic-Angle Graphene

Physicists have directly observed unconventional superconductivity in magic-angle twisted tri-layer graphene using a new experimental platform, revealing a unique pairing mechanism

Published

on

Image credit: Sampson Wilcox and Emily Theobald, MIT RLE

MIT physicists have unveiled compelling direct evidence for unconventional superconductivity in “magic-angle” twisted tri-layer graphene—an atomically engineered material that could reimagine the future of energy transport and quantum technologies. Their new experiment marks a pivotal step forward, offering a fresh perspective on how electrons synchronize in precisely stacked two-dimensional materials, potentially laying the groundwork for next-generation superconductors that function well above current temperature limits.

Instead of looking merely at theoretical possibilities, the MIT team built a novel platform that lets researchers visualize the superconducting gap “as it emerges in real-time within 2D materials,” said co-lead author Shuwen Sun in a media statement. This gap is crucial, reflecting how robust the material’s superconducting state is during temperature changes—a key indicator for practical applications.

What’s striking, said Jeong Min Park, study co-lead author, is that the superconducting gap in magic-angle graphene differs starkly from the smooth, uniform profile seen in conventional superconductors. “We observed a V-shaped gap that reveals an entirely new pairing mechanism—possibly driven by the electrons themselves, rather than crystal vibrations,” Park said. Such direct measurement is a “first” for the field, giving scientists a more refined tool for identifying and understanding unconventional superconductivity.

Senior author Pablo Jarillo-Herrero emphasized that their method could help crack the code behind room-temperature superconductors: “This breakthrough may trigger deeper insights not just for graphene, but for the entire class of twistronic materials. Imagine grids and quantum computers that operate with zero energy loss—this is the holy grail we’re moving toward,” Jarillo-Herrero said in the MIT release.

Collaborators included scientists from Japan’s National Institute for Materials Science, broadening the impact of the research. The discovery builds on years of progress since the first magic-angle graphene experiments in 2018, opening what many now call the “twistronics” era—a field driven by stacking and twisting atom-thin materials to unlock uniquely quantum properties.

Looking ahead, the team plans to expand its analysis to other ultra-thin structures, hoping to map out electronic behavior not only for superconductors, but for a wider range of correlated quantum phases. “We can now directly observe electron pairs compete and coexist with other quantum states—this could allow us to design new materials from the ground up,” said Park in her public statement.

The research underscores the value of visualization in fundamental physics, suggesting that direct observation may be the missing link to controlling quantum phenomena for efficient, room-temperature technology.

Continue Reading

Space & Physics

Atoms Speak Out: Physicists Use Electrons as Messengers to Unlock Secrets of the Nucleus

Physicists at MIT have devised a table-top method to peer inside an atom’s nucleus using the atom’s own electrons

Published

on

Illustration of a pear-shaped radium nucleus composed of clustered spheres representing protons and neutrons, with black arrows depicting electrons acting as messengers exiting the nucleus, set against a blue-to-pink gradient background symbolizing the molecular environment used in MIT’s nuclear probing experiments.
EdPublica-AI Artistic interpretation featuring a glowing molecular structure and electrons visualized as messengers interacting with the nucleus inside the radium monofluoride molecule

Physicists at MIT have developed a pioneering method to look inside an atom’s nucleus — using the atom’s own electrons as tiny messengers within molecules rather than massive particle accelerators.​

In a study published in science, the researchers demonstrated this approach using molecules of radium monofluoride, which pair a radioactive radium atom with a fluoride atom. The molecules act like miniature laboratories where electrons naturally experience extremely strong electric fields. Under these conditions, some electrons briefly penetrate the radium nucleus, interacting directly with protons and neutrons inside. This rare intrusion leaves behind a measurable energy shift, allowing scientists to infer details about the nucleus’ internal structure.​

The team observed that these energy shifts, though minute — about one millionth of the energy of a laser photon — provide unambiguous evidence of interactions occurring inside the nucleus rather than outside it. “We now have proof that we can sample inside the nucleus,” said Ronald Fernando Garcia Ruiz, the Thomas A. Franck Associate Professor of Physics at MIT, in a statement. “It’s like being able to measure a battery’s electric field. People can measure its field outside, but to measure inside the battery is far more challenging. And that’s what we can do now.”

Traditionally, exploring nuclear interiors required kilometer-long particle accelerators to smash high-speed beams of electrons into targets. The MIT technique, by contrast, achieves similar insight with a table-top molecular setup. It makes use of the molecule’s natural electric environment to magnify these subtle interactions.​

The radium nucleus, unlike most which are spherical, has an asymmetric “pear” shape that makes it a powerful system for studying violations of fundamental physical symmetries — phenomena that could help explain why the universe contains far more matter than antimatter. “The radium nucleus is predicted to be an amplifier of this symmetry breaking, because its nucleus is asymmetric in charge and mass, which is quite unusual,” Garcia Ruiz explained.​

To conduct their experiments, the researchers produced radium monofluoride molecules at CERN’s Collinear Resonance Ionization Spectroscopy (CRIS) facility, trapped and cooled them in laser-guided chambers, and then measured laser-induced energy transitions with extreme precision. The work involved MIT physicists Shane Wilkins, Silviu-Marian Udrescu, and Alex Brinson, alongside international collaborators.​

“Radium is naturally radioactive, with a short lifetime, and we can currently only produce radium monofluoride molecules in tiny quantities,” said Wilkins. “We therefore need incredibly sensitive techniques to be able to measure them.”

As Udrescu added, “When you put this radioactive atom inside of a molecule, the internal electric field that its electrons experience is orders of magnitude larger compared to the fields we can produce and apply in a lab. In a way, the molecule acts like a giant particle collider and gives us a better chance to probe the radium’s nucleus.”

Going forward, the MIT team aims to cool and align these molecules so that the orientation of their pear-shaped nuclei can be controlled for even more detailed mapping. “Radium-containing molecules are predicted to be exceptionally sensitive systems in which to search for violations of the fundamental symmetries of nature,” Garcia Ruiz said. “We now have a way to carry out that search”

Continue Reading

Space & Physics

Physicists Double Precision of Optical Atomic Clocks with New Laser Technique

MIT researchers develop a quantum-enhanced method that doubles the precision and stability of optical atomic clocks, paving the way for portable, ultra-accurate timekeeping.

Published

on

Image Credit: Ryley McConkey

MIT physicists have unveiled a new technique that could significantly improve the precision and stability of next-generation optical atomic clocks, devices that underpin everything from mobile transactions to navigation apps. In a recent media statement, the MIT team explained: “Every time you check the time on your phone, make an online transaction, or use a navigation app, you are depending on the precision of atomic clocks. An atomic clock keeps time by relying on the ‘ticks’ of atoms as they naturally oscillate at rock-steady frequencies.”

Current atomic clocks rely on cesium atoms tracked with lasers at microwave frequencies, but scientists are advancing to clocks based on faster-ticking atoms like ytterbium, which can be tracked with lasers at higher, optical frequencies and discern intervals up to 100 trillion times per second.

A research group at MIT, led by Vladan Vuletić, the Lester Wolfe Professor of Physics, detailed that their newly developed method harnesses a laser-induced “global phase” in ytterbium atoms and boosts this effect using quantum amplification. Vuletić stated, “We think our method can help make these clocks transportable and deployable to where they’re needed.” The approach, called global phase spectroscopy, doubles the precision of an optical atomic clock, enabling it to resolve twice as many ticks per second compared to standard setups, and promises further gains with increasing atom counts.

The technique could pave the way for portable optical atomic clocks able to measure all manner of phenomena in various locations. Vuletić summarized the broader scientific ambitions: “With these clocks, people are trying to detect dark matter and dark energy, and test whether there really are just four fundamental forces, and even to see if these clocks can predict earthquakes.”

The MIT team has previously demonstrated improved clock precision by quantumly entangling hundreds of ytterbium atoms and using time reversal tricks to amplify their signals. Their latest advance applies these methods to much faster optical frequencies, where stabilizing the clock laser has always been a major challenge. “When you have atoms that tick 100 trillion times per second, that’s 10,000 times faster than the frequency of microwaves,” said Vuletić in the statement. Their experiments revealed a surprisingly useful “global phase” information about the laser frequency, previously thought irrelevant, unlocking the potential for even greater accuracy.

The research, led by Vuletić and joined by Leon Zaporski, Qi Liu, Gustavo Velez, Matthew Radzihovsky, Zeyang Li, Simone Colombo, and Edwin Pedrozo-Peñafiel of the MIT-Harvard Center for Ultracold Atoms, was published in Nature. They believe the technical benefits of the new method will make atomic clocks easier to run and enable stable, transportable clocks fit for future scientific exploration, including earthquake prediction, fundamental physics, and global time standards.

Continue Reading

Trending