Connect with us

Space & Physics

New antenna design could help detect faint cosmological signals

This could revolutionise our ability to detect the faint signals of Cosmological Recombination Radiation (CRR)

Published

on

Image credit: PIB

In an intriguing development, scientists at the Raman Research Institute (RRI) in Bangalore, India, have developed a novel antenna design that could revolutionise our ability to detect the faint signals of Cosmological Recombination Radiation (CRR).

These signals, which are crucial for understanding the thermal and ionization history of the Universe, have so far remained undetected due to their elusive nature. The newly designed antenna is capable of measuring signals in the 2.5 to 4 Gigahertz (GHz) frequency range, which is optimal for detecting CRR, a signal that is approximately one billion times fainter than the Cosmic Microwave Background (CMB).

As per available sources, the universe is approximately 13.8 billion years old, and in its earliest stages, it was extremely hot and dense. During this time, the Universe was composed of a plasma of free electrons, protons, and light nuclei such as helium and lithium. The radiation coexisting with this matter has been detected today as the CMB, which holds vital information about the early cosmological and astrophysical processes.

One such process, known as the Epoch of Recombination, marks the transition from a fully ionized primordial plasma to mostly neutral hydrogen and helium atoms. This transition emitted photons, creating the Cosmological Recombination Radiation (CRR), which distorts the underlying CMB spectrum. Detecting these faint CRR signals would provide a wealth of information about the Universe’s early ionization and thermal history and could even offer the first experimental measurements of helium abundance before it was synthesized in the cores of stars.

However, detecting CRR is a significant challenge because these signals are extremely weak—about nine orders of magnitude fainter than the CMB. To address this, scientists need highly sensitive instruments that can isolate these signals from the vast cosmic noise surrounding them.

To this end, researchers from RRI, including Mayuri Rao and Keerthipriya Sathish, along with Debdeep Sarkar from the Indian Institute of Science (IISc), have developed an innovative ground-based broadband antenna designed to detect signals as faint as one part in 10,000. Their design is capable of making sky measurements in the 2.5 to 4 GHz range, the frequency band most suitable for CRR detection.

According to Keerthipriya Sathish, the lead author of the study, “For the sky measurements we plan to perform, this broadband antenna offers the highest sensitivity compared to other antennas designed for the same bandwidth. The antenna’s frequency-independent performance across a wide range and its smooth frequency response are features that set it apart from conventional designs.”

The antenna is compact and lightweight, weighing just 150 grams, with a square shape measuring 14 cm by 14 cm.

The proposed antenna is a dual-polarized dipole antenna with a unique four-arm structure shaped like a fantail. This design ensures that the antenna maintains the same radiation pattern across its entire operational bandwidth, with a mere 1% variation in its characteristics. This is crucial for distinguishing spectral distortions from galactic foregrounds. The antenna’s custom design allows it to “stare” at the same patch of sky throughout its full operational range of 1.5 GHz (from 2.5 to 4 GHz), which is key to separating the CRR signals from other cosmic noise.

The antenna is compact and lightweight, weighing just 150 grams, with a square shape measuring 14 cm by 14 cm. It is made using a low-loss dielectric flat substrate on which the antenna is etched in copper, while the bottom features an aluminum ground plate. Between these plates lies a radio-transparent foam layer that houses the antenna’s connectors and receiver base.

With a sensitivity of around 30 millikelvin (mK) across the 2.5-4 GHz frequency range, the antenna is capable of detecting tiny temperature variations in the sky. Even before being scaled to a full array, this antenna design is expected to provide valuable first scientific results when integrated with a custom receiver. One of the anticipated experiments is to study an excess radiation reported at 3.3 GHz, which has been speculated to result from exotic phenomena, including dark matter annihilation. These early tests will help refine the antenna’s performance and guide future design improvements aimed at achieving the sensitivity required for CRR detection.

The researchers plan to deploy an array of these antennas in radio-quiet areas, where radio frequency interference is minimal or absent. The antenna’s design is straightforward and can be easily fabricated using methods similar to those employed in Printed Circuit Board (PCB) manufacturing, ensuring high machining accuracy and consistency for scaling up to multiple-element arrays. The antenna is portable, making it easy to deploy in remote locations for scientific observations.

The team is already looking ahead, planning further improvements to achieve even greater sensitivity, with a long-term goal of detecting CRR signals at sensitivities as low as one part per billion. With this innovative antenna design, the team hopes to make significant strides toward uncovering the secrets of the early Universe and its formation.

Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *

Space & Physics

MIT Pioneers Real-Time Observation of Unconventional Superconductivity in Magic-Angle Graphene

Physicists have directly observed unconventional superconductivity in magic-angle twisted tri-layer graphene using a new experimental platform, revealing a unique pairing mechanism

Published

on

Image credit: Sampson Wilcox and Emily Theobald, MIT RLE

MIT physicists have unveiled compelling direct evidence for unconventional superconductivity in “magic-angle” twisted tri-layer graphene—an atomically engineered material that could reimagine the future of energy transport and quantum technologies. Their new experiment marks a pivotal step forward, offering a fresh perspective on how electrons synchronize in precisely stacked two-dimensional materials, potentially laying the groundwork for next-generation superconductors that function well above current temperature limits.

Instead of looking merely at theoretical possibilities, the MIT team built a novel platform that lets researchers visualize the superconducting gap “as it emerges in real-time within 2D materials,” said co-lead author Shuwen Sun in a media statement. This gap is crucial, reflecting how robust the material’s superconducting state is during temperature changes—a key indicator for practical applications.

What’s striking, said Jeong Min Park, study co-lead author, is that the superconducting gap in magic-angle graphene differs starkly from the smooth, uniform profile seen in conventional superconductors. “We observed a V-shaped gap that reveals an entirely new pairing mechanism—possibly driven by the electrons themselves, rather than crystal vibrations,” Park said. Such direct measurement is a “first” for the field, giving scientists a more refined tool for identifying and understanding unconventional superconductivity.

Senior author Pablo Jarillo-Herrero emphasized that their method could help crack the code behind room-temperature superconductors: “This breakthrough may trigger deeper insights not just for graphene, but for the entire class of twistronic materials. Imagine grids and quantum computers that operate with zero energy loss—this is the holy grail we’re moving toward,” Jarillo-Herrero said in the MIT release.

Collaborators included scientists from Japan’s National Institute for Materials Science, broadening the impact of the research. The discovery builds on years of progress since the first magic-angle graphene experiments in 2018, opening what many now call the “twistronics” era—a field driven by stacking and twisting atom-thin materials to unlock uniquely quantum properties.

Looking ahead, the team plans to expand its analysis to other ultra-thin structures, hoping to map out electronic behavior not only for superconductors, but for a wider range of correlated quantum phases. “We can now directly observe electron pairs compete and coexist with other quantum states—this could allow us to design new materials from the ground up,” said Park in her public statement.

The research underscores the value of visualization in fundamental physics, suggesting that direct observation may be the missing link to controlling quantum phenomena for efficient, room-temperature technology.

Continue Reading

Space & Physics

Atoms Speak Out: Physicists Use Electrons as Messengers to Unlock Secrets of the Nucleus

Physicists at MIT have devised a table-top method to peer inside an atom’s nucleus using the atom’s own electrons

Published

on

Illustration of a pear-shaped radium nucleus composed of clustered spheres representing protons and neutrons, with black arrows depicting electrons acting as messengers exiting the nucleus, set against a blue-to-pink gradient background symbolizing the molecular environment used in MIT’s nuclear probing experiments.
EdPublica-AI Artistic interpretation featuring a glowing molecular structure and electrons visualized as messengers interacting with the nucleus inside the radium monofluoride molecule

Physicists at MIT have developed a pioneering method to look inside an atom’s nucleus — using the atom’s own electrons as tiny messengers within molecules rather than massive particle accelerators.​

In a study published in science, the researchers demonstrated this approach using molecules of radium monofluoride, which pair a radioactive radium atom with a fluoride atom. The molecules act like miniature laboratories where electrons naturally experience extremely strong electric fields. Under these conditions, some electrons briefly penetrate the radium nucleus, interacting directly with protons and neutrons inside. This rare intrusion leaves behind a measurable energy shift, allowing scientists to infer details about the nucleus’ internal structure.​

The team observed that these energy shifts, though minute — about one millionth of the energy of a laser photon — provide unambiguous evidence of interactions occurring inside the nucleus rather than outside it. “We now have proof that we can sample inside the nucleus,” said Ronald Fernando Garcia Ruiz, the Thomas A. Franck Associate Professor of Physics at MIT, in a statement. “It’s like being able to measure a battery’s electric field. People can measure its field outside, but to measure inside the battery is far more challenging. And that’s what we can do now.”

Traditionally, exploring nuclear interiors required kilometer-long particle accelerators to smash high-speed beams of electrons into targets. The MIT technique, by contrast, achieves similar insight with a table-top molecular setup. It makes use of the molecule’s natural electric environment to magnify these subtle interactions.​

The radium nucleus, unlike most which are spherical, has an asymmetric “pear” shape that makes it a powerful system for studying violations of fundamental physical symmetries — phenomena that could help explain why the universe contains far more matter than antimatter. “The radium nucleus is predicted to be an amplifier of this symmetry breaking, because its nucleus is asymmetric in charge and mass, which is quite unusual,” Garcia Ruiz explained.​

To conduct their experiments, the researchers produced radium monofluoride molecules at CERN’s Collinear Resonance Ionization Spectroscopy (CRIS) facility, trapped and cooled them in laser-guided chambers, and then measured laser-induced energy transitions with extreme precision. The work involved MIT physicists Shane Wilkins, Silviu-Marian Udrescu, and Alex Brinson, alongside international collaborators.​

“Radium is naturally radioactive, with a short lifetime, and we can currently only produce radium monofluoride molecules in tiny quantities,” said Wilkins. “We therefore need incredibly sensitive techniques to be able to measure them.”

As Udrescu added, “When you put this radioactive atom inside of a molecule, the internal electric field that its electrons experience is orders of magnitude larger compared to the fields we can produce and apply in a lab. In a way, the molecule acts like a giant particle collider and gives us a better chance to probe the radium’s nucleus.”

Going forward, the MIT team aims to cool and align these molecules so that the orientation of their pear-shaped nuclei can be controlled for even more detailed mapping. “Radium-containing molecules are predicted to be exceptionally sensitive systems in which to search for violations of the fundamental symmetries of nature,” Garcia Ruiz said. “We now have a way to carry out that search”

Continue Reading

Space & Physics

Physicists Double Precision of Optical Atomic Clocks with New Laser Technique

MIT researchers develop a quantum-enhanced method that doubles the precision and stability of optical atomic clocks, paving the way for portable, ultra-accurate timekeeping.

Published

on

Image Credit: Ryley McConkey

MIT physicists have unveiled a new technique that could significantly improve the precision and stability of next-generation optical atomic clocks, devices that underpin everything from mobile transactions to navigation apps. In a recent media statement, the MIT team explained: “Every time you check the time on your phone, make an online transaction, or use a navigation app, you are depending on the precision of atomic clocks. An atomic clock keeps time by relying on the ‘ticks’ of atoms as they naturally oscillate at rock-steady frequencies.”

Current atomic clocks rely on cesium atoms tracked with lasers at microwave frequencies, but scientists are advancing to clocks based on faster-ticking atoms like ytterbium, which can be tracked with lasers at higher, optical frequencies and discern intervals up to 100 trillion times per second.

A research group at MIT, led by Vladan Vuletić, the Lester Wolfe Professor of Physics, detailed that their newly developed method harnesses a laser-induced “global phase” in ytterbium atoms and boosts this effect using quantum amplification. Vuletić stated, “We think our method can help make these clocks transportable and deployable to where they’re needed.” The approach, called global phase spectroscopy, doubles the precision of an optical atomic clock, enabling it to resolve twice as many ticks per second compared to standard setups, and promises further gains with increasing atom counts.

The technique could pave the way for portable optical atomic clocks able to measure all manner of phenomena in various locations. Vuletić summarized the broader scientific ambitions: “With these clocks, people are trying to detect dark matter and dark energy, and test whether there really are just four fundamental forces, and even to see if these clocks can predict earthquakes.”

The MIT team has previously demonstrated improved clock precision by quantumly entangling hundreds of ytterbium atoms and using time reversal tricks to amplify their signals. Their latest advance applies these methods to much faster optical frequencies, where stabilizing the clock laser has always been a major challenge. “When you have atoms that tick 100 trillion times per second, that’s 10,000 times faster than the frequency of microwaves,” said Vuletić in the statement. Their experiments revealed a surprisingly useful “global phase” information about the laser frequency, previously thought irrelevant, unlocking the potential for even greater accuracy.

The research, led by Vuletić and joined by Leon Zaporski, Qi Liu, Gustavo Velez, Matthew Radzihovsky, Zeyang Li, Simone Colombo, and Edwin Pedrozo-Peñafiel of the MIT-Harvard Center for Ultracold Atoms, was published in Nature. They believe the technical benefits of the new method will make atomic clocks easier to run and enable stable, transportable clocks fit for future scientific exploration, including earthquake prediction, fundamental physics, and global time standards.

Continue Reading

Trending