Society
Infosys Foundation to skill 48,000 students in engineering, arts, and science
The philanthropic and CSR division of IT giant Infosys is dedicated to improving the employability of young learners in rural India.

Infosys Foundation, the philanthropic and CSR division of Infosys, has committed more than $3.96 million (INR 33 crore) to skill 48,000 students in engineering, arts, and science. Partnering with the ICT Academy of India in Tamil Nadu, this initiative aims to enhance the employability of young learners in rural India. The collaboration will focus on equipping students from tier 2 and tier 3 cities pursuing engineering, arts, and science courses with the necessary skills for career development.
According to a press statement, Infosys Foundation will also help establish ‘Centres of Excellence for Women and Youth Empowerment’ in over 450 colleges across India. These centres will serve as hubs for skill development and training, both online and offline, as well as facilitate job placements. The curriculum will include 80 hours of training in core skills, 20 hours of training in soft skills, and placement facilitation for certified students. Additional activities will include youth empowerment summits and coding practice for real-world problems.
Additionally, the initiative will leverage Infosys Springboard, Infosys’ flagship digital learning platform, to make learning and skilling more accessible to students.
This joint initiative aims to skill 48,000 students over three years in IT, banking, financial services and insurance, retail, e-commerce, logistics, knowledge process outsourcing (KPO), and soft skills. Infosys Foundation has approved a grant over INR 33 crore to this project.
Additionally, the initiative will leverage Infosys Springboard, Infosys’ flagship digital learning platform, to make learning and skilling more accessible to students.
“At Infosys Foundation, education is the cornerstone of our commitment to empowering the less fortunate. Education must create pathways to employability. Through our collaboration with the ICT Academy, we aim to equip young learners in rural India with essential technical and soft skills, enhancing their industry-readiness and employability in today’s dynamic talent landscape,” Sumit Virmani, Trustee of Infosys Foundation, said.
He also added: “we are confident that this initiative will inspire our youth to excel across disciplines of their choice and build sustainable careers.”
“As the industry rapidly evolves, the demand for a workforce skilled in advanced IT, KPO, BFSI, retail, e-commerce, and logistics has never been higher. According to a recent report, India’s IT industry alone is projected to generate over 2 million new jobs by 2027. This initiative by Infosys Foundation is not just about meeting the immediate needs of the job market; it’s about investing in the long-term career success of 48,000 students over the next three years,” V Srikanth, Chief Executive Officer of ICT Academy, said.
According to him, for graduating students, this translates to enhanced employability and greater career opportunities.
Society
How Scientists and Investigators Decode Air Crashes — The Black Box and Beyond
The final report may take months, but it will be critical in issuing safety directives or revising standard procedures.

As rescue and recovery operations continue following the June 12, 2025, plane crash in Ahmedabad, aviation safety experts are now focusing on the technical investigation phase. With 241 lives lost, the search for the cause isn’t just about accountability—it’s about prevention.
The Black Box: Aviation’s Memory Keeper
1. What Is the Black Box?
Despite the name, the black box is actually orange — for visibility. It consists of two components:
- Cockpit Voice Recorder (CVR): Captures conversations and audio from the flight deck.
- Flight Data Recorder (FDR): Logs dozens to hundreds of parameters — speed, altitude, engine status, control inputs.
These devices are housed in titanium or steel and can withstand:
- Temperatures above 1,000°C
- Underwater pressures up to 20,000 feet
- Crashes with up to 3,600 G-force
They also emit underwater locator beacons for up to 30 days.
2. Forensic Engineering & Flight Reconstruction
Beyond black boxes, investigators use:
- Radar data and air traffic control logs
- Wreckage analysis for structural failure clues
- Satellite-based tracking systems like ADS-B
- Weather data for turbulence or wind shear insights
Forensic teams often reconstruct the flight path virtually or even physically using recovered debris to determine failure points.
3. Human Factors & AI in Modern Investigation
New tools like machine learning and human factors analysis are used to identify procedural errors or lapses in judgement.
In many modern investigations, AI helps:
- Filter large datasets (e.g., over 1,000 flight parameters per second)
- Detect patterns missed by the human eye
- Predict similar risk scenarios in future flights
What Happens Next in the Ahmedabad Crash?
Authorities, in coordination with the Directorate General of Civil Aviation (DGCA), are likely:
- Retrieving and analyzing the black box
- Interviewing air traffic controllers
- Reconstructing the aircraft’s final seconds using both data and simulation
The final report may take months, but it will be critical in issuing safety directives or revising standard procedures.
Society
Researchers Unveil Light-Speed AI Chip to Power Next-Gen Wireless and Edge Devices
This could transform the future of wireless communication and edge computing

In a breakthrough that could transform the future of wireless communication and edge computing, engineers at MIT have developed a novel AI hardware accelerator capable of processing wireless signals at the speed of light. The new optical chip, built for signal classification, achieves nanosecond-level performance—up to 100 times faster than conventional digital processors—while consuming dramatically less energy.
With wireless spectrum under growing strain from billions of connected devices, from teleworking laptops to smart sensors, managing bandwidth has become a critical challenge. Artificial intelligence offers a path forward, but most existing AI models are too slow and power-hungry to operate in real time on wireless devices.
The MIT solution, known as MAFT-ONN (Multiplicative Analog Frequency Transform Optical Neural Network), could be a game-changer.
“There are many applications that would be enabled by edge devices that are capable of analyzing wireless signals,” said Prof. Dirk Englund, senior author of the study, in a media statement. “What we’ve presented in our paper could open up many possibilities for real-time and reliable AI inference. This work is the beginning of something that could be quite impactful.”
Published in Science Advances, the research describes how MAFT-ONN classifies signals in just 120 nanoseconds, using a compact optical chip that performs deep-learning tasks using light rather than electricity. Unlike traditional systems that convert signals to images before processing, the MIT design processes raw wireless data directly in the frequency domain—eliminating delays and reducing energy usage.
“We can fit 10,000 neurons onto a single device and compute the necessary multiplications in a single shot,” said Ronald Davis III, lead author and recent MIT PhD graduate.
The device achieved over 85% accuracy in a single shot, and with multiple measurements, it converges to above 99% accuracy, making it both fast and reliable.
Beyond wireless communications, the technology holds promise for edge AI in autonomous vehicles, smart medical devices, and future 6G networks, where real-time response is critical. By embedding ultra-fast AI directly into devices, this innovation could help cars react to hazards instantly or allow pacemakers to adapt to a patient’s heart rhythm in real-time.
Future work will focus on scaling the chip with multiplexing schemes and expanding its ability to handle more complex AI tasks, including transformer models and large language models (LLMs).
Society
Ahmedabad Plane Crash: The Science Behind Aircraft Take-Off -Understanding the Physics of Flight
Take-off is one of the most critical phases of flight, relying on the precise orchestration of aerodynamics, propulsion, and control systems. Here’s how it works:

On June 12, 2025, a tragic aviation accident struck Ahmedabad, India when a regional passenger aircraft, Air India flight A1-171, crashed during take-off at Sardar Vallabhbhai Patel International Airport. According to preliminary reports, the incident resulted in over 200 confirmed casualties, including both passengers and crew members, and several others are critically injured. The aviation community and scientific world now turn their eyes not just toward the cause but also toward understanding the complex science behind what should have been a routine take-off.
How Do Aircraft Take Off?
Take-off is one of the most critical phases of flight, relying on the precise orchestration of aerodynamics, propulsion, and control systems. Here’s how it works:
1. Lift and Thrust
To leave the ground, an aircraft must generate lift, a force that counters gravity. This is achieved through the unique shape of the wing, called an airfoil, which creates a pressure difference — higher pressure under the wing and lower pressure above — according to Bernoulli’s Principle and Newton’s Third Law.
Simultaneously, engines provide thrust, propelling the aircraft forward. Most commercial jets use turbofan engines, which accelerate air through turbines to generate power.
2. Critical Speeds
Before takeoff, pilots calculate critical speeds:
- V1 (Decision Speed): The last moment a takeoff can be safely aborted.
- Vr (Rotation Speed): The speed at which the pilot begins to lift the nose.
- V2 (Takeoff Safety Speed): The speed needed to climb safely even if one engine fails.
If anything disrupts this process — like bird strikes, engine failure, or runway obstructions — the results can be catastrophic.

Environmental and Mechanical Challenges
Factors like wind shear, runway surface condition, mechanical integrity, or pilot error can interfere with safe take-off. Investigators will be analyzing these very aspects in the Ahmedabad case.
The Bigger Picture
Take-off accounts for a small fraction of total flight time but is disproportionately associated with accidents — approximately 14% of all aviation accidents occur during take-off or initial climb.
-
Earth4 months ago
How IIT Kanpur is Paving the Way for a Solar-Powered Future in India’s Energy Transition
-
Space & Physics2 months ago
Could dark energy be a trick played by time?
-
Society3 months ago
Starliner crew challenge rhetoric, says they were never “stranded”
-
Space & Physics2 months ago
Sunita Williams aged less in space due to time dilation
-
Society5 months ago
DeepSeek: The Good, The Bad, and The Ugly
-
Space & Physics5 months ago
Obituary: R. Chidambaram, Eminent Physicist and Architect of India’s Nuclear Program
-
Earth2 months ago
122 Forests, 3.2 Million Trees: How One Man Built the World’s Largest Miyawaki Forest
-
Society4 months ago
Sustainable Farming: The Microgreens Model from Kerala, South India