Connect with us

Space & Physics

The physics of the mysterious Hall effect

In the first article of Ed Publica’s series on the Hall effect, condensed matter physicist Dr. Saraubh Basu, explains the physics of the Hall effect, which has reaped fruits for condensed matter physics research over the past century.

Dr. Saurabh Basu

Published

on

Illustration of electric currents. Credit: Wikimedia

It was in 1879, when the Hall effect was observed in the laboratory for the first time. Then 23-year-old Edwin Hall’s work then led to various avatars of his eponymous effect being discovered. Previously unknown properties inherent in semiconductors among other materials, were now unraveled to the physicist’s eyes.

Unfortunately for Hall, who died in 1938, he never won the Nobel Prize for his work, despite three Noble prizes and a ‘Science Breakthrough Prize’ were awarded over the past century.

But to physicists, the Hall effect has fundamentally advanced our understanding about the properties of electronic systems.

For one, the Hall effect has enabled calculations of the fine structure constant, α ∼ 1/137. This quantity is of paramount importance in quantum mechanics and electromagnetism, for measuring the strength in the interactions that electrically charged particles such as electrons and muons, have with light particles (or photons).

For another, there are various other related discoveries, for example, the role of topology and geometry, fractional statistics, non-abelian anyons among others that have constantly enriched our knowledge in the field of condensed matter physics.

In the rest of this article, I shall set the stage with Edwin Hall’s anecdote into his seminal discovery which marked the period high of his career, to probe the various ‘avatars’ of the Hall effect.

What is the Hall effect?

Hall first came across the concept of a current carrying wire experiencing a mechanical force in presence of a magnetic field, while attending his supervisor Henry Rowland’s lectures.

Edwin Hall. Credit: Wikimedia

But he stumbled upon a fact that the direction of the electric current (beyond certain transient phenomena) remained insensitive to the presence of the magnetic field.

Hall disagreed with this, assured that the force experienced by the charges is proportional to the magnetic field, with the geometry of the conductor does not play any role. Rowland offered him the problem of investigating the effect of a magnet on the current flowing in a fixed conductor for his doctoral dissertation.

Hall found the appearance of a voltage perpendicular to the flow of electric current, while under the presence of a perpendicularly positioned and intense magnetic field. This is now called the Hall voltage. Also, the longitudinal resistivity of the wire, now dubbed Hall resistivity, turned out to be insensitive to the magnitude field.

A schematic diagram depicting the Hall effect. Credit: Karthik / EdPublica (modified from Wikimedia diagram)

But what Hall observed is attributed the classical Hall effect. Again, this is just one of the various avatars of the Hall effect that have been discovered during this period.

In 1980, the ‘integer’ quantum Hall effect was observed, with the ‘fractional’ avatar observed just later in 1982. Thereafter, the anomalous Hall effect, the spin Hall effect along with its quantum counterpart – the quantum spin Hall effect that were discovered by different groups of researchers.

All of these novel findings have significantly influenced our understanding of the material properties, particularly those of the semiconductors.

In the next series of articles, I shall shed light onto the intriguing physics of these various avatars …

Dr. Saurabh Basu is Professor at Department of Physics, Indian Institute of Technology (IIT) Guwahati. He works in the area of correlated electron systems with the main focus on bosonic superfluidity in (optical) lattices.

Society

Ahmedabad Plane Crash: The Science Behind Aircraft Take-Off -Understanding the Physics of Flight

Take-off is one of the most critical phases of flight, relying on the precise orchestration of aerodynamics, propulsion, and control systems. Here’s how it works:

Published

on

On June 12, 2025, a tragic aviation accident struck Ahmedabad, India when a regional passenger aircraft, Air India flight A1-171, crashed during take-off at Sardar Vallabhbhai Patel International Airport. According to preliminary reports, the incident resulted in over 200 confirmed casualties, including both passengers and crew members, and several others are critically injured. The aviation community and scientific world now turn their eyes not just toward the cause but also toward understanding the complex science behind what should have been a routine take-off.

How Do Aircraft Take Off?

Take-off is one of the most critical phases of flight, relying on the precise orchestration of aerodynamics, propulsion, and control systems. Here’s how it works:

1. Lift and Thrust

To leave the ground, an aircraft must generate lift, a force that counters gravity. This is achieved through the unique shape of the wing, called an airfoil, which creates a pressure difference — higher pressure under the wing and lower pressure above — according to Bernoulli’s Principle and Newton’s Third Law.

Simultaneously, engines provide thrust, propelling the aircraft forward. Most commercial jets use turbofan engines, which accelerate air through turbines to generate power.

2. Critical Speeds

Before takeoff, pilots calculate critical speeds:

  • V1 (Decision Speed): The last moment a takeoff can be safely aborted.
  • Vr (Rotation Speed): The speed at which the pilot begins to lift the nose.
  • V2 (Takeoff Safety Speed): The speed needed to climb safely even if one engine fails.

If anything disrupts this process — like bird strikes, engine failure, or runway obstructions — the results can be catastrophic.

Environmental and Mechanical Challenges

Factors like wind shear, runway surface condition, mechanical integrity, or pilot error can interfere with safe take-off. Investigators will be analyzing these very aspects in the Ahmedabad case.

The Bigger Picture

Take-off accounts for a small fraction of total flight time but is disproportionately associated with accidents — approximately 14% of all aviation accidents occur during take-off or initial climb.

Continue Reading

Space & Physics

MIT claims breakthrough in simulating physics of squishy, elastic materials

In a series of experiments, the new solver demonstrated its ability to simulate a diverse array of elastic behaviors, ranging from bouncing geometric shapes to soft, squishy characters

Published

on

Image credit: Courtesy of researchers

Researchers at MIT claim to have unveiled a novel physics-based simulation method that significantly improves stability and accuracy when modeling elastic materials — a key development for industries spanning animation, engineering, and digital fabrication.

In a series of experiments, the new solver demonstrated its ability to simulate a diverse array of elastic behaviors, ranging from bouncing geometric shapes to soft, squishy characters. Crucially, it maintained important physical properties and remained stable over long periods of time — an area where many existing methods falter.

Other simulation techniques frequently struggled in tests: some became unstable and caused erratic behavior, while others introduced excessive damping that distorted the motion. In contrast, the new method preserved elasticity without compromising reliability.

“Because our method demonstrates more stability, it can give animators more reliability and confidence when simulating anything elastic, whether it’s something from the real world or even something completely imaginary,” Leticia Mattos Da Silva, a graduate student at MIT’s Department of Electrical Engineering and Computer Science, said in a media statement.

Their study, though not yet peer-reviewed or published, will be presented at the August proceedings of the SIGGRAPH conference in Vancouver, Canada.

While the solver does not prioritize speed as aggressively as some tools, it avoids the accuracy and robustness trade-offs often associated with faster methods. It also sidesteps the complexity of nonlinear solvers, which are commonly used in physics-based approaches but are often sensitive and prone to failure.

Looking ahead, the research team aims to reduce computational costs and broaden the solver’s applications. One promising direction is in engineering and fabrication, where accurate elastic simulations could enhance the design of real-world products such as garments, medical devices, and toys.

“We were able to revive an old class of integrators in our work. My guess is there are other examples where researchers can revisit a problem to find a hidden convexity structure that could offer a lot of advantages,” Mattos Da Silva added.

The study opens new possibilities not only for digital content creation but also for practical design fields that rely on predictive simulations of flexible materials.

Continue Reading

Space & Physics

This Sodium-Fuelled Clean Energy Breakthrough Could Electrify Aviation and Shipping

The innovation offers more than triple the energy density of today’s lithium-ion batteries — potentially clearing a major hurdle for electric-powered aviation, rail, and maritime travel

Published

on

An H-cell modified with electrodes and an ion-conducting ceramic membrane. Credits: Gretchen Ertl/MIT News

A new type of fuel cell developed by MIT researchers could represent a pivotal breakthrough in the race to decarbonize heavy transportation. Designed around liquid sodium metal, the innovation offers more than triple the energy density of today’s lithium-ion batteries — potentially clearing a major hurdle for electric-powered aviation, rail, and maritime travel.

Unlike traditional batteries that require time-consuming recharging, this system operates like a fuel cell that can be refueled quickly using liquid sodium — a cheap, abundant substance derived from salt. The technology, which uses air as a reactant and a solid ceramic electrolyte to facilitate the reaction, was tested in lab prototypes and demonstrated energy densities exceeding 1,500 watt-hours per kilogram — a level that could enable regional electric flight and clean shipping.

“We expect people to think that this is a totally crazy idea,” said Professor Yet-Ming Chiang, lead author and Kyocera Professor of Ceramics, in a media statement. “If they didn’t, I’d be a bit disappointed because if people don’t think something is totally crazy at first, it probably isn’t going to be that revolutionary.”

Chiang explained that current lithium-ion batteries top out at around 300 watt-hours per kilogram — far short of the 1,000 watt-hours needed for electric aircraft to become viable at scale. The new sodium-based cell meets that benchmark, which could enable 80% of domestic flights and drastically reduce aviation’s carbon footprint.

Moreover, the sodium-fueled system offers environmental benefits beyond zero emissions. Its chemical byproduct, sodium oxide, reacts spontaneously in the atmosphere to capture carbon dioxide and convert it into sodium bicarbonate — better known as baking soda — which may help counteract ocean acidification if it ends up in marine environments.

“There’s this natural cascade of reactions that happens when you start with sodium metal,” Chiang said. “It’s all spontaneous. We don’t have to do anything to make it happen, we just have to fly the airplane.”

The team has already created two functioning lab-scale prototypes: one vertical and one horizontal model. In both, sodium gradually reacts with oxygen from air to generate electricity, and a moist air stream improves the process by allowing liquid byproducts to be expelled more easily.

Karen Sugano, one of the MIT doctoral students on the project, noted, “The key was that we can form this liquid discharge product and remove it easily, as opposed to the solid discharge that would form in dry conditions,” she said in a media statement.

The researchers have founded a startup, Propel Aero, housed in MIT’s startup incubator The Engine, to scale the technology. Their first commercial goal: a brick-sized fuel cell capable of powering a large agricultural drone — expected to be ready within a year.

Chiang emphasized the economic and safety benefits of using sodium, which melts just below 100°C and was once mass-produced in the U.S. for leaded gasoline production. “It reminds us that sodium metal was once produced at large scale and safely handled and distributed around the U.S.,” he said.

Critically, the fuel cell design also avoids many safety concerns of high-energy batteries by physically separating the fuel and oxidizer. “If you’re pushing for really, really high energy density, you’d rather have a fuel cell than a battery for safety reasons,” Chiang said.

By reviving and reimagining sodium-metal chemistry in a practical, scalable form, the MIT team may have lit the path toward clean, electrified transportation systems — from the skies above to the oceans below.

Continue Reading

Trending