Connect with us

Society

Water is the new ‘spice’ of space travel

As we enter a new space age scripting history, we may be yet to come to grasps with the politics of space.

Karthik Vinod

Published

on

Credit: Anna Claire Schellenberg

“Power over spice, is power over all,” said an ominous voice (In an alien sounding language) as words then took shape on the theater screen, at last week’s release of Dune: Part Two (2024), a sci-fi adaptation of Frank Herbert’s 1965 eponymous novel. To give a basic premise of its fictional universe, humanity has become a space-faring race, inhabiting planets orbiting distant stars. In Herbert’s Dune, humanity accessed a novel spice found only in a barren, desert planet called Arrakis. 

As much as it works to spice up food, it functions as a psychotropic drug as well. In fact, consuming too much spice can help you enable bend space-time itself like a wormhole, providing prescience to enable safe passage between the stars. 

It may just be a novel that recently got adapted into a two-parter (perhaps it’s a trilogy if Dune Messiah is adapted too) movie, but the story vibes with a lot of chatter in our society too.

Elon Musk, for instance, envisions humanity to colonize Mars with 1 million people. He tweeted at one point on the need to avoid the Great Filter, and similarly embrace our destiny as it were of becoming a space-faring species. 

It may just be chatter and hype, but last week saw Intuitive Machine’s Odyssey mission end all too soon, after a rough landing in the rugged lunar terrain, leaving it tipped over its side. That mission may have ended all too soon. However, it surely would be replaced by another robotic exploration mission that Intuitive Machines’ contracted to do as part of NASA’s Commercial Lunar Payload Services (CLPS). And more missions will follow up to set the stage for Artemis III’s planned lunar soft landing in 2026. That mission would presumably see the first astronauts to set boots on the moon since Apollo 17.

Much like spice melange in Dune, the Artemis program hopes to demonstrate how water on the moon can fuel dreams of space colonization. Simple electrolysis of water can yield molecular hydrogen and oxygen on earth. On the moon, it’s easier to launch a rocket with even limited fuel compared to earth, since lunar gravity is one-sixth of the earth. In outer space, water as fuel can help alleviate the cost burden inherent in human spaceflight. 

The spice is actually the excreta of the native gigantic sandworms of Arrakis. Credit: Astronimation / Wikimedia

Regulating space

Dune explored themes beyond technological supremacy inherent with spice. In fact, what made the book so popular was how it imagined humanity 8,000 years from now ruled by an ‘Emperor of the Known Universe’ with their nobility like in feudal societies. However, the bearers of the spice melange held prescience abilities in addition to folding space for interstellar travel. The Spacing Guild as they were known in the novel, could see events unfold like no one could. They weren’t noble, despite being elevated to nobility status. The politics of space travel isn’t a subject that’s not been broached in science fiction, but perhaps we don’t talk as much of it in our real world as we ought to.

The universe in Dune would see wars unfold time and again. However, what’s important is how space agencies in our world – NASA, ESA, ISRO, CNSA, JAXA, Roscosmos and now many from the developing world contest for space in space. The Donald Trump administration brought the Artemis Accords to bear, and now has seen 36 countries become signatories for peaceful use of outer space. This isn’t an international mandate, since the Chinese and the Russians say they have no plans to sign yet – calling it ‘US-centric’ in designs.

What’s at stake now for space exploration is the question of whether anyone own property in space. Well, the UN’s Office for Outer Space Affairs says no, referring to the 1967 Outer Space Treaty signed and thus agreed upon that space is international property. However, it doesn’t state how the resources can be utilized in other respects. Soil samples in the moon collected by Apollo have been distributed by the US to other nations. Space research and the space community so far has always been known to be cordial, seemingly escaping the touches of politics. Seemingly. 

Water ice exists as just on average 500 parts per million in the lunar regolith (in higher latitudes) – drier than even the driest sands on earth. Though to a spectrometer on a lunar orbiter, that’s the signature for water, although not in drinkable form. However, water ice can’t be directly electrolyzed without essentially mining that water much like we do on earth. Perhaps in a not so distant future, space mining could be a thing perhaps on asteroids where, much like the Spacing Guild in Dune, space companies could send diggers. The ‘Emperor of the Known Universe’ though isn’t really well-known at this point. It’s more like the many Great Houses in the novel, with Dukes and Duchesses scheming their own ambitions, to dominate the spice and control planet Arrakis. 

The space sector isn’t regulated well enough as technology seems to keep abreast of everything else. Water’s the new oil of space. There isn’t too much of it either. However, mining anything in space would come at the cost of violating UN designated sustainability goals. Mining water from the moon in excess could cause some long lasting damage to the soil. 

Here’s an ethical outlook. When we think and dream of human spaceflight exploration and all that, we also carry with it our character as a species. Although polluting space may not affect earth physically, doesn’t it deem a society with little moral rectitude if it ever was to happen? Wouldn’t the wrong people be incentivized? Shouldn’t we care for principles we believe in on earth and apply them to space? 

As we enter the New Space Age, we perhaps remember that dialogue, “Power over spice, is power over all.” Dune’s nihilistic at best, although we can do better to not act on that urge to control and dominate. Perhaps, we can treat outer space too with some respect and the awe we always had for it. 

Karthik is a science writer, and co-founder of Ed Publica. He writes and edits the science page. He's also a freelance journalist, with words in The Hindu, a prominent national newspaper in India.

Society

Is India’s Clean Cooking Gas Model the Future for the Global South?

The Indian model, backed by smart subsidies and sustainable policies, provides a scalable solution for developing nations striving for clean cooking access

Published

on

Image by Aristal Branson from Pixabay

At the just concluded India Energy Week 2025 (February 11-14), India’s Union Minister of Petroleum and Natural Gas, Hardeep Singh Puri, chaired a Ministerial Roundtable on Clean Cooking, where India’s success in providing universal access to clean cooking gas became a key focal point. The Minister emphasized that India’s model for clean cooking gas is not only a success story but also a replicable blueprint for the Global South, offering solutions to nations facing similar energy access challenges.

“India’s clean cooking gas revolution is a game-changer,” said Puri. He pointed out the key factors behind this success: targeted subsidies, strong political will, the digitization of distribution networks by Oil Marketing Companies (OMCs), and nationwide campaigns to shift cultural practices towards clean cooking.

The session brought together representatives from Brazil, Tanzania, Malawi, Sudan, Nepal, and key industry leaders, including the International Energy Agency (IEA), Total Energy, and Boston Consulting Group (BCG). These nations, all striving to enhance energy access for their populations, were eager to learn from India’s achievements.

Under India’s popular government scheme Pradhan Mantri Ujjwala Yojana (PMUY– Prime Minister’s Lightening Scheme), beneficiaries receive LPG access at a highly affordable cost of just 7 cents per day, while other consumers can access clean cooking fuel at 15 cents per day. “This affordability has been a game-changer in driving widespread adoption,” added Shri Puri, underlining the pivotal role of subsidies in overcoming financial barriers to clean cooking.

International representatives shared their nations’ efforts to transition to clean cooking solutions. Dkt. Doto Mashaka Biteko, Deputy Prime Minister and Minister of Energy of Tanzania, outlined the country’s strategy to transition 80% of households to clean cooking by 2030, relying on subsidies and a mix of energy sources, including LPG, natural gas, and biogas. Despite this ambition, he noted challenges such as financing constraints, infrastructure costs, and the need for regulatory reforms to encourage private-sector participation.

Similarly, Dr. Mohieldien Naiem Mohamed Saied, Minister of Energy and Oil, Sudan, emphasized the need for private-sector involvement to overcome gaps in LPG supply, particularly as Sudan still imports much of its energy. He stressed the importance of encouraging local cylinder production and ensuring cost-effective imports to drive broader adoption.

Mary Burce Warlick, Deputy Executive Director of the IEA, recognized India’s success as a model that offers valuable lessons for other nations grappling with issues of affordability, access, and infrastructure. She emphasized the role of concessional financing and public-private partnerships (PPP) in scaling up clean cooking access. Addressing cultural acceptance and regulatory adjustments, such as tax reductions, were also highlighted as critical factors for large-scale adoption.

Rahool Panandiker, Partner at Boston Consulting Group (BCG), further underscored the effectiveness of India’s clean cooking transformation. He attributed the success to the strong political commitment, effective subsidy targeting, and robust public awareness campaigns. Panandiker also credited India’s Oil Marketing Companies (OMCs) for enabling last-mile LPG delivery through digital platforms, making adoption seamless. He also stressed the importance of refining the cylinder refill model to ensure sustained usage while balancing affordability with economic sustainability.

In addition to LPG, the roundtable explored the potential of alternative clean cooking technologies. Puri addressed the potential of solar cookers in expanding clean cooking solutions across the Global South. He highlighted that IOCL’s advanced solar cookers, priced at approximately $500 per unit, could be a viable solution, though the price point remains a challenge for widespread adoption. “Leveraging carbon financing and collaborating with the private sector can drive costs down and make solar cooking a viable alternative for millions,” he stated.

This initiative aligns with India’s broader efforts to diversify clean cooking options beyond LPG, further reinforcing its commitment to reducing reliance on traditional biomass fuels and cutting carbon emissions. The government’s focus on solar cooking options aims to ensure a more sustainable future for energy access, particularly in remote and underserved areas.

“The Indian model, backed by smart subsidies and sustainable policies, provides a scalable solution for developing nations striving for clean cooking access,” Puri said. He also stressed that achieving universal clean cooking access is not merely an economic imperative but a moral one, given the severe health and environmental impacts of traditional biomass cooking.

Continue Reading

Green Energy

India Strengthens Clean Energy Initiatives at India Energy Week 2025

These clean energy projects are part of India’s broader strategy to diversify its energy sources and strengthen its energy security while promoting sustainability

Published

on

Image credit: PIB

At the India Energy Week 2025, India underscored its commitment to a sustainable and clean energy future through several strategic partnerships and agreements. Minister of Petroleum and Natural Gas, Hardeep Singh Puri, highlighted the importance of these initiatives in driving India’s transition to a greener energy landscape.

A key development in the clean energy sector was the partnership between India’s public sector firm BPCL and Eco Wave Power of Israel, which aims to establish India’s first wave energy pilot project in Mumbai. The project will utilize wave energy converter technology, marking a significant step in the country’s exploration of renewable energy sources.

In the biofuel sector, BPCL also signed an MoU with the National Sugar Institute, Kanpur, to scale up the production of sweet sorghum-based bioethanol. This collaboration will help build capacity for both farmers and industry partners, supporting India’s drive to increase the share of biofuels in its energy mix.

These clean energy projects are part of India’s broader strategy to diversify its energy sources and strengthen its energy security while promoting sustainability. Through these initiatives, India is reinforcing its position as a key player in the global clean energy transition.

Minister Puri emphasized that these agreements are a testament to India’s commitment to securing affordable, sustainable energy and fostering international collaborations in cutting-edge energy solutions. These partnerships will help achieve India’s energy transition goals, ensuring a resilient and sustainable energy future for the nation.

Continue Reading

Society

Sustainable Farming: The Microgreens Model from Kerala, South India

Microgreens can be harvested in 10 to 15 days from sowing, and they are not affected by external factors like rainfall, floods, or drought.

Lakshmi Narayanan

Published

on

Image by Oleksandr Pidvalnyi from Pixabay

In the verdant expanses of South Chittoor, a locality near Ernakulam city in Kerala, a coastal state in the southwestern part of India, lives Ajay Gopinath, a pioneer in the field of urban farming. In a region where traditional farming is deeply rooted but not always feasible, Ajay has embraced a more innovative approach, cultivating crops in a controlled indoor environment. His journey into microgreen farming is not just about a unique method of growing food, but a mission to bring sustainable, nutritious farming into urban spaces.

With a small, yet efficient setup of food-grade trays and advanced farming techniques, Ajay has created an urban farm within his own home. This modern method allows him to grow a variety of microgreens without the need for large tracts of land or the strenuous labour typically associated with farming. His work is a testament to how technology and tradition can combine, offering a glimpse into the future of agriculture in cities. Ajay showcases his micro-farming setup in a 600-square-foot space, where he grows a variety of crops using food-grade trays in a micro-farming system.

Ajay Gopinath. Image credit: By special arrangement

Microgreens and Their Benefits

Microgreens, such as sprouts and small plants grown from seeds, are harvested when they reach about two inches in height. This method of growing plants is known as “microgreen farming” and does not require extensive land or hard physical labour. “Microgreens can be harvested in 10 to 15 days from sowing, and they are not affected by external factors like rainfall, floods, or drought. Plants like sunflower, mustard, spinach, chickpea, and others can be grown in this way,” says Ajay Gopinath.

The key advantage of microgreens is their dense nutritional value. For instance, just 25 grams of microgreens can provide the same nutritional benefits as consuming a kilogram of cabbage or lentils. Microgreens are essentially at the next growth stage after sprouts, when they develop their first true leaves alongside the cotyledons.

Ajay Gopinath’s Urban Microgreen Farm

Ajay operates his indoor microgreen farm behind the Chittoor temple in Ernakulam, where he grows around 15 varieties of microgreens, including mustard, chia seeds, cabbage, and others. With daily harvests, his small farming space consistently yields reliable income. Through his venture Grow Greens, Ajay has proven that large-scale land is unnecessary for microgreen farming, making it possible to grow these nutritious plants in a small indoor space.

How to Farm Microgreens Indoors?

Microgreens are grown in trays arranged on racks, where each tray contains a different variety of plant. This indoor farm follows modern agricultural techniques using artificial lighting, fans, and purified water to create a controlled environment. In the initial stages, the seeds are placed in shallow trays with a layer of moist cloth. After two days, once the seeds begin to sprout, the trays are moved to the “grow room” that maintains the ideal temperature and humidity for plant growth. Within 7 to 10 days, the microgreens reach a height of 24 inches, and they are ready to be harvested.

Microgreens are grown in trays arranged on racks, where each tray contains a different variety of plant

Ajay emphasizes that proper microgreen farming should be scientifically conducted, and the use of materials like printed paper or plastic is not ideal for healthy production. He stresses the importance of using seeds that are free from pesticides and other chemicals, and the seeds must be non-GMO, produced under natural conditions. Seeds for this purpose are sourced from cities like Bangalore, Pune, and Hyderabad.

The Nutritional Benefits of Microgreens

Microgreens contain up to 40 times the nutrient density of mature plants. While many people are familiar with basic salad ingredients like onions, tomatoes, and cucumbers, microgreens offer a much more potent alternative. They are now favoured by health-conscious individuals, those on specialized diets, and patients undergoing treatment. Ajay’s microgreens are sold in star hotels and supermarkets in Ernakulam, and he offers sample packs for those new to this type of nutrition.

Market Demand and Expansion

While microgreens are priced at 1500-2000 INR per kilogram in the market, Ajay’s aim is to make them widely accessible. He believes that microgreen farming should expand to the grassroots level, making it available in local panchayats as a sustainable and nutritious food option. By making daily deliveries of freshly harvested microgreens, Ajay is building awareness about this high-tech farming method, showing that it requires minimal land and effort while offering a steady income.

Setting Up a Microgreen Farm

To begin, food-grade trays are used for farming. These trays are arranged on racks, with each tray dedicated to a specific plant. A controlled environment, complete with artificial light, fans, and purified water, ensures optimal conditions for growth. Special containers are used to prepare the seeds, and after the first two days, when they begin to sprout, they are moved to the grow room. By maintaining low humidity and a consistent temperature, the plants can grow and be harvested in just 7-10 days.

Ajay suggests that anyone, even those living in apartments with limited space, can grow microgreens at home. He recommends using local seeds, such as rice, millet, fenugreek, or mustard, and ensuring the growing space has good airflow and sunlight.

The EP View

Microgreen farming, as demonstrated by Ajay Gopinath and his Grow Greens venture, is a promising solution for urban farming. It proves that with minimal space and effort, anyone can grow highly nutritious crops indoors, offering both health benefits and a sustainable income source. Through his work, Ajay is helping to popularize microgreen farming, aiming to make it accessible to all.

Continue Reading

Trending